

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

The cscore Library

[image: https://img.shields.io/badge/Maintained%3F-yes-green.svg?style=flat-square] [https://github.com/cs-util]
[image: https://img.shields.io/nuget/v/com.csutil.cscore.svg?colorB=006400&style=flat-square] [https://www.nuget.org/packages/com.csutil.cscore]
[image: https://img.shields.io/github/last-commit/cs-util-com/cscore.svg?colorB=4267b2&style=flat-square] [https://github.com/cs-util-com/cscore/commits]
[image: https://img.shields.io/github/issues-pr-closed/cs-util-com/cscore.svg?colorB=green&style=flat-square] [https://github.com/cs-util-com/cscore/pulls?q=is%3Aclosed]
[image: https://img.shields.io/github/issues-closed/cs-util-com/cscore.svg?colorB=006400&style=flat-square] [https://github.com/cs-util-com/cscore/issues]
[image: https://img.shields.io/github/commit-activity/y/cs-util-com/cscore.svg?colorB=006400&style=flat-square] [https://github.com/cs-util-com/cscore/graphs/contributors]
[image: https://img.shields.io/github/v/release/cs-util-com/cscore?label=Show%20Releases&style=flat-square] [https://github.com/cs-util-com/cscore/releases]
[image: https://img.shields.io/twitter/follow/csutil_com?label=Show%20News&style=social] [https://twitter.com/csutil_com]

Website [https://cs-util-com.github.io/cscore/]
•
GitHub [https://github.com/cs-util-com/cscore]
•
Examples
•
Getting started
•
Demo (in your browser)

cscore is a lightweight library providing commonly used helpers & patterns for both your pure C# and Unity projects.

Fewer 3rd party libraries and dependencies included in a project means fewer code and complexity which in
the end leads to less bugs. On the other hand having zero dependencies very likely means that a
few fundamental concepts and patterns you will have to implement over and over for each new project.
This repo tries to provide a single source for a few simple to extend features to make sure these
work great together and build up on each other. Some things like logging, communication of components,
dependency and state management, easy to use IO and similar fundamental challenges in software are
things all applications benefit from.

This is why I think it makes sense to put this into a single compact core library with great test coverage and
great documentation. And these two can go hand in hand, well written tests can serve as a easy to
understand documentation + usage examples, which automatically stay up to date since they have to
change with the code over time. That’s how the unit tests in this project ensure all features are
well tested and documented. See below for some extracts from these tests. To ensure full test
coverage mutation testing is used (thanks to Stryker [https://github.com/stryker-mutator/stryker-net]!)

All components are loosly coupled so that components can be used individually when needed without
deep knowledge about the full cscore library required.

Test cscore in the browser [https://github.com/cs-util-com/cscore-playground#readme]

Go to the cscore-playground [https://github.com/cs-util-com/cscore-playground#readme] to
test the library in your browser (via GitHub codespaces):

[image: https://raw.githubusercontent.com/cs-util-com/cscore-playground/main/Other%20files/How-to-open-GitHub-codespace.png]Where to find the 'Open in a codespace' button [https://github.com/cs-util-com/cscore-playground#readme]

Overview

The following summary gives a quick overview of all library features:

Pure C# Components

The aim of the cscore package as to stay is slim/minimal as possible while including the feature and functionality typical projects would benefit from.

	Log - A minimalistic logging wrapper + AssertV3 to add saveguards anywhere in your logic

	EventBus - Publish and subscribe to global events from anywhere in your code.
Handles 1 million events a second with minimal memory footprint!

	Injection Logic - A simple inversion of control pattern that does not rely on magic.
Relies on the EventBus system, so it has the same speed as well!

	JSON Parsing - Reading and writing JSON through a simple interface.
Default implementation uses Json.NET [https://github.com/JamesNK/Newtonsoft.Json] to ensure high performance

	REST Extensions - Extensions to simplify sending REST requests in as few lines as possible without limiting flexibility

	Directory & File Extensions - To simplify handling files, folders and persisting data

	Common String extension methods demonstrated in StringExtensionTests.cs

	Functional extensions and Transducers to allow functional data mapping (filter, map, reduce, ..)

	Simple statemachines that work on your existing classes

	An asynchronous chainable key value store (get & set) that
can be used for anything from simple persistent settings to remote server/DB access

	An immutable datastore (Redux syntax) that includes undo/redo,
timetravel (replay recordings) and a thunk middleware (dispatching async tasks)

	A JsonMerger helper to allow simple Json merging and diffing logic that helps to
update an instance of a class using a Three-way merge [https://en.wikipedia.org/wiki/Merge_(version_control)#Three-way_merge]

	An AutoMapper to map fields and attributes from one class to another using simple json serialization under the hood.

	Many other helpful extension methods best demonstrated in HelperMethodTests.cs

Additional Unity Components

	GameObject.Subscribe & MonoBehaviour.Subscribe -
Listening to events while respecting the lifecycle of Unity objects

	MonoBehaviour Injection & Singletons - Using the injection logic to create and access Unity objects

	The Link Pattern - Making it easy to connect prefabs with code (and by that separate design & UI from your logic)

	The ViewStack Pattern - Using GameObjects as separate views stacked in a parent object and
controlled by a single ViewStack to introduce a simple solution for switching views and UI screens.

	MonoBehaviour.ExecuteDelayed & MonoBehaviour.ExecuteRepeated -
Executing asynchronous actions delayed and/or repeated

	UnityWebRequest.SendV2 - UnityWebRequest extension methods

	PlayerPrefsV2 - Adds SetBool, SetStringEncrypted and more, see PlayerPrefsV2Tests.cs for all examples

	Running xUnit tests in Unity - Execute your xUnit tests in Unity even in
the built application to ensure everything works as expected in the production runtime

💡 Usage & Examples

See below for a full usage overview to explain the APIs with simple examples.

Logging

A lightweight zero config Log wrapper that is automatically stripped from production builds and can be combined with
other logging libraries like Serilog for more complex use cases.

Log.d("I'm a log message");
Log.w("I'm a warning");
Log.e("I'm an error");
Log.e(new Exception("I'm an exception"));
Log.w("I'm a warning with params:", "param 1", 2, "..");

// Performance (timings & memory) logging example:
void MyMethod1() {
 using (Log.MethodEntered()) {
 // Some method body (duration and memory will be logged)
 }
}

// Or written with a different using syntax:
void MyMethod1(int myVar123) {
 using Stopwatch timing = Log.MethodEnteredWith(myVar123);
 // Some method body (duration and memory will be logged)
}

This will result in the following output in the Log:

> I'm a log message
 * at LogTests.TestBasicLogOutputExamples() c:\..\LogTests.cs:line 19
 ..

> WARNING: I'm a warning
 * at LogTests.TestBasicLogOutputExamples() c:\..\LogTests.cs:line 20
 ..

>>> EXCEPTION: com.csutil.Error: I'm an error
 : [[com.csutil.Error: I'm an error]]
 * at LogTests.TestBasicLogOutputExamples() c:\..\LogTests.cs:line 21
 ..

>>> EXCEPTION: System.Exception: I'm an exception
 : [[System.Exception: I'm an exception]]
 * at LogTests.TestBasicLogOutputExamples() c:\..\LogTests.cs:line 22
 ..

> WARNING: I'm a warning with params: : [[param 1, 2, ..]]
 ..

--> MyMethod1
 ..
<-- MyMethod1 finished after 3 ms, allocated managed mem: 525,40 KB, allocated mem: 12,00 KB

Creating logging-adapters is simple, the following logging-adapters can be used out of the box (and they can be seen as examples/templates):

	LogToConsole.cs [https://github.com/cs-util-com/cscore/blob/master/CsCore/PlainNetClassLib/src/Plugins/CsCore/com/csutil/logging/LogToConsole.cs] -
The default logger which uses the normal System.Console

	LogToUnityDebugLog.cs [https://github.com/cs-util-com/cscore/blob/master/CsCore/CsCoreUnity/Plugins/CsCoreUnity/com/csutil/logging/LogToUnityDebugLog.cs] -
The default logger when using the library in Unity projects, when using it UnityEngine.Debug.Log is used for all logging events

	LogToFile.cs [https://github.com/cs-util-com/cscore/blob/master/CsCore/PlainNetClassLib/src/Plugins/CsCore/com/csutil/logging/LogToFile.cs] -
Allows to write all log outputs into a persisted file

	LogToMultipleLoggers.cs [https://github.com/cs-util-com/cscore/blob/master/CsCore/PlainNetClassLib/src/Plugins/CsCore/com/csutil/logging/LogToMultipleLoggers.cs] -
Allows to use multiple loggers in parallel, e.g. to log to the console, a file and a custom error reporting system simultaneously

The used logging-adapter can be set via Log.instance = new MyCustomLogImpl();

Through this abstraction it becomes easy to later switch to more complex logging backends, e.g. the
Serilog logging library [https://github.com/serilog/serilog], while keeping your code unchanged.

AssertV3

	AssertV3 can be used anywhere in your code

	Will be automatically removed/stripped from your production code

	Can be configured to Log.e an error (the default) or to throw an exception

	Use AssertV3 in places where you would otherwise add a temporary Log line while testing.
AssertV3 can stay in your code and will let you know of any unexpected behaviour

	Will automatically pause the Debugger if it fails while debugging

	The error message string will only be evaluated if the assertion fails, to prevent unnecessary memory allocations or
performance issues when logging is active.

AssertV3.IsTrue(1 + 1 == 3, () => "This assertion will fail");

See here [https://github.com/cs-util-com/cscore/blob/master/CsCore/xUnitTests/src/Plugins/CsCoreXUnitTests/com/csutil/tests/LogTests.cs#L63] for more examples.

Log.MethodEntered & Log.MethodDone

	Simple monitoring of method calls and method-timings to detect abnormal behavior

	Easy to follow logging pattern for each method or method section where logging is helpful

	Optional maxAllowedTimeInMs assertion at the end of the method

	The returned Stopwatch can be used for additional logging if needed

private void SomeExampleMethod1(string s, int i) {
 Stopwatch timing = Log.MethodEnteredWith("s=" + s, "i=" + i);

 { // .. here would be some method logic ..
 Thread.Sleep(3);
 } // .. as the last line in the tracked method add:

 Log.MethodDone(timing, maxAllowedTimeInMs: 50);
 // If the method needed more then 50ms an error is logged
}

This will result in the following output in the Log:

> --> LogTests.SomeExampleMethod1(..) : [[s=I am a string, i=123]]
 at LogTests.SomeExampleMethod1(System.String s, Int32 i)

> <-- LogTests.SomeExampleMethod1(..) finished after 3 ms
 at LogTests.SomeExampleMethod1(System.String s, Int32 i)

MethodAnalytics

Analyzing the results of these Log.MethodEntered.. and Log.MethodDone.. is possible for example through the
MethodAnalytics [https://github.com/cs-util-com/cscore/blob/master/CsCore/PlainNetClassLib/src/Plugins/CsCore/com/csutil/logging/analytics/MethodAnalytics.cs] class:

var methodAnalytics = new MethodAnalytics() { includeMethodArguments = true };
StopwatchV2 t = Log.MethodEntered();
MyMethod1(true);
Log.MethodDone(t);
string report = methodAnalytics.ToString();

The report string from this is:

{
 "MethodName": "ExampleUsage1",
 "DurationInMs": 135,
 "Then": [
 {
 "MethodName": "MyMethod1",
 "DurationInMs": 120,
 "Args": ["True"],
 "Then": [
 {
 "MethodName": "MyMethod2",
 "DurationInMs": 28,
 "Args": ["10"],
 "Then": [..]
 },
 {
 "MethodName": "MyMethod3",
 "Args": ["abc"]
 },
 {
 "MethodName": "MyMethod1",
 "DurationInMs": 52,
 "Args": ["False"],
 "Then": [
 {
 "MethodName": "MyMethod2",
 "DurationInMs": 26,
 "Args": ["10"],
 "Then": [..]
 },
 ..
]
 }
]
 }
]
}

See the MethodAnalyticsTests here [https://github.com/cs-util-com/cscore/blob/master/CsCore/xUnitTests/src/Plugins/CsCoreXUnitTests/com/csutil/tests/logging/MethodAnalyticsTests.cs] for more examples.

The created analytics tree tries to represent the relation between the different logging events but in multi-threading setups or
if Log.MethodDone.. is not always called the created relations in the tree can’t always represent the actual “Who was called by
whom” relationships. Because of that creating short-lived MethodAnalytics instances to analyse specific parts of your code is recommended.

The EventBus

	Publish and subscribe to global events from anywhere in your code

	Sends 1 million events in under 3 seconds with minimal memory footprint!
(Tested [https://github.com/cs-util-com/cscore/blob/master/CsCore/xUnitTests/src/com/csutil/tests/EventBusTests.cs#L158]
on a mid-range laptop - will add some more detailed numbers soon)

// The EventBus can be accessed via EventBus.instance
EventBus eventBus = EventBus.instance;
string eventName = "TestEvent1";

//Register a subscriber for the eventName that gets notified when ever an event is send:
object subscriber1 = new object(); // can be of any type
eventBus.Subscribe(subscriber1, eventName, () => {
 Log.d("The event was received!");
});

// Now send out an event:
eventBus.Publish(eventName);

// When subscribers dont want to receive events anymore they can unsubscribe:
eventBus.Unsubscribe(subscriber1, eventName);

Rule of thumb: Only use an EventBus if you can’t exactly tell who will listen to the published events.
Do not use the EventBus to pass an event from x to y if you know exactly who x and y will be!
Artificially separating 2 components that tightly belong together does not help

Injection Logic

	A simple inversion of control pattern with the main call being MyClass1 x = IoC.inject.Get<MyClass1>(this); where this is the requesting entity

	Relies on the EventBus system, so its fast with minimal memory footprint as well (got about a million injections in ~3 sec).

	Free of any unpredicable magic via anotations - I tried to keep the injection API as simple as possible, existing libraries often tend to overcomplicate things

	Lazy loading, singletons and transient types (every inject request creates a new instance) are all easily implementable via .RegisterInjector, see examples below:

// The default injector can be accessed via IoC.inject
Injector injector = IoC.inject;

// Requesting an instance of MyClass1 will fail because no injector registered yet to handle requests for the MyClass1 type:
Assert.Null(injector.Get<MyClass1>(this));

// Setup an injector that will always return the same instance for MyClass1 when IoC.inject.Get<MyClass1>() is called:
MySubClass1 myClass1Singleton = new MySubClass1();
injector.SetSingleton<MyClass1, MySubClass1>(myClass1Singleton);

// Internally .SetSingleton() will register an injector for the class like this:
injector.RegisterInjector<MyClass1>(new object(), (caller, createIfNull) => {
 // Whenever injector.Get is called the injector always returns the same instance:
 return myClass1Singleton; // Here the singleton could be lazy loaded
});

// Now calling IoC.inject.Get<MyClass1>() will always result in the same instance:
MyClass1 myClass1 = injector.Get<MyClass1>(this);
Assert.Same(myClass1Singleton, myClass1); // Its the same object reference

Another extended example usage can be found in
InjectionTests.ExampleUsage2() (see here) [https://github.com/cs-util-com/cscore/blob/master/CsCore/xUnitTests/src/com/csutil/tests/InjectionTests.cs#L40]

IEnumerable Extensions

For common tasks on IEnumerables cscore provides methods like Map (same as LINQs Select),
Reduce (same as LINQs Aggregate) and Filter (same as LINQs Where) but also
IsNullOrEmpty and ToStringV2 which are explained in this simple example:

IEnumerable<string> myStrings = new List<string>() { "1", "2", "3", "4", "5" };
IEnumerable<int> convertedToInts = myStrings.Map(s => int.Parse(s));
IEnumerable<int> filteredInts = convertedToInts.Filter(i => i <= 3); // Keep 1,2,3
Assert.False(filteredInts.IsNullOrEmpty());
Log.d("Filtered ints: " + filteredInts.ToStringV2(i => "" + i)); // "[1, 2, 3]"
int sumOfAllInts = filteredInts.Reduce((sum, i) => sum + i); // Sum up all ints
Assert.Equal(6, sumOfAllInts); // 1+2+3 is 6

More usage examples can be found in the HelperMethodTests.cs [https://github.com/cs-util-com/cscore/blob/master/CsCore/xUnitTests/src/com/csutil/tests/HelperMethodTests.cs]

Type IsSubclassOf & IsCastableTo

Extension methods to check if a type is a subclass of another type:

Type MySubClass1 = typeof(MySubClass1);
Assert.True(MySubClass1.IsSubclassOf<MyClass1>());
Assert.True(typeof(MySubClass1).IsCastableTo<MyClass1>());

JSON Parsing

	The JsonWriter and JsonReader interfaces are an abstraction that should be flexible enough to be used for most usecases.

	The underlying implementation can easily be swapped if needed and the default implementation uses Json.NET [https://github.com/JamesNK/Newtonsoft.Json].

class MyClass1 { // example class with a field and a property
 public string myString;
 public string myString2 { get; set; }
}

MyClass1 x1 = new MyClass1() { myString = "abc", myString2 = "def" };

// Generate a json object from the object that includes all public fields and props:
string jsonString = JsonWriter.GetWriter().Write(x1);

// Parse the json string back into a second instance x2 and compare both:
MyClass1 x2 = JsonReader.GetReader().Read<MyClass1>(jsonString);
Assert.Equal(x1.myString, x2.myString);
Assert.Equal(x1.myString2, x2.myString2);

Directory & File Extensions

The DirectoryInfo [https://docs.microsoft.com/en-us/dotnet/api/system.io.directoryinfo] and
FileInfo [https://docs.microsoft.com/en-us/dotnet/api/system.io.fileinfo] classes already provide helpful interfaces to
files and directories and the following extensions improve the usability if these classes:

// Get a directory to work in:
DirectoryInfo myDirectory = EnvironmentV2.instance.GetAppDataFolder();
Log.d("The directory path is: " + myDirectory.FullPath());

// Get a non-existing child directory
var childDir = myDirectory.GetChildDir("MyExampleSubDirectory1");

// Create the sub directory:
childDir.CreateV2(); // myDirectory.CreateSubdirectory("..") works too

// Rename the directory:
childDir.Rename("MyExampleSubDirectory2");

// Get a file in the child directory:
FileInfo file1 = childDir.GetChild("MyFile1.txt");

// Saving and loading from files:
string someTextToStoreInTheFile = "Some text to store in the file";
file1.SaveAsText(someTextToStoreInTheFile);
string loadedText = file1.LoadAs<string>(); // loading JSON would work as well
Assert.Equal(someTextToStoreInTheFile, loadedText);

// Deleting directories:
Assert.True(childDir.DeleteV2()); // (Deleting non-existing directories would returns false)
// Check that the directory no longer exists:
Assert.False(childDir.IsNotNullAndExists());

StateMachines

A statemachine in it’s simplest form is a current state and a set of allowed state transitions.
Transitioning from state 1 to 2 can be done in a single short
method [https://github.com/cs-util-com/cscore/blob/master/CsCore/PlainNetClassLib/src/Plugins/CsCore/com/csutil/datastructures/StateMachine.cs#L14]
on the set of allowed transitions. Here an example statemachine:

 // First define a set of allowed transitions to define the state machine:
Dictionary<MyStates, HashSet<MyStates>> stateMachine = new Dictionary<MyStates, HashSet<MyStates>>();
stateMachine.AddToValues(MyStates.MyState1, MyStates.MyState2); // 1 => 2 allowed
stateMachine.AddToValues(MyStates.MyState2, MyStates.MyState3); // 2 => 3 allowed

// Initialize a state-machine:
MyStates currentState = MyStates.MyState1;

// It is possible to listen to state machine transitions:
StateMachine.SubscribeToAllTransitions<MyStates>(new object(), (machine, oldState, newState) => {
 Log.d("Transitioned from " + oldState + " to " + newState);
});
// And its possible to listen only to specific transitions:
StateMachine.SubscribeToTransition(new object(), MyStates.MyState1, MyStates.MyState2, delegate {
 Log.d("Transitioned from 1 => 2");
});

// Transition the state-machine from state 1 to 2:
currentState = stateMachine.TransitionTo(currentState, MyStates.MyState2);
Assert.Equal(MyStates.MyState2, currentState);

// Invalid transitions throw exceptions (current state is 2):
Assert.Throws<InvalidOperationException>(() => {
 currentState = stateMachine.TransitionTo(currentState, MyStates.MyState1);
});

More statemachine examples can be found here [https://github.com/cs-util-com/cscore/blob/master/CsCore/xUnitTests/src/Plugins/CsCoreXUnitTests/com/csutil/tests/StateMachineTests.cs#L17].

KeyValueStore

Provides an async chainable key value store (get & set) that can be used for simple persistent settings but
also for remote server/DB access. Different store implementations are included for some common use cases:

	InMemoryKeyValueStore - Keeps a very fast in memory dictionary for fastest possible read write

	FileBasedKeyValueStore - Enables persisting values permanently

	RetryKeyValueStore - A retry layer using exponential backoff

	ExceptionWrapperKeyValueStore - To handle exceptions of an inner store (e.g. if a connection to a
remote server throws a timeout exception this can be handled to return the cached local value instead)

IKeyValueStore store = new InMemoryKeyValueStore();
string myKey1 = "myKey1";

MyClass1 x1 = new MyClass1() { myString1 = "Abc", myString2 = "Abc2" };
store.Set(myKey1, x1);

MyClass1 x2 = store.Get<MyClass1>(myKey1, defaultValue: null).Result;
Assert.Equal(x1.myString1, x2.myString1);
Assert.Equal(x1.myString2, x2.myString2);

The KeyValueStores can be chained so that if the outer store does not find the element it will ask the next inner store.
This allows to have fast stores like the InMemoryKeyValueStore on the most outer level and the slowest stores like the
connection to the database on the most inner one:

string myKey1 = "test123";
MyClass1 x1 = new MyClass1() { myString1 = "Abc", myString2 = "Abc2" };

// Create a fast memory store and combine it with a LiteDB store that is persisted to disk:
IKeyValueStore store = new InMemoryKeyValueStore().WithFallbackStore(new FileBasedKeyValueStore(EnvironmentV2.instance.GetOrAddTempFolder("SomeFolder123")));
await store.Set(myKey1, x1);

MyClass1 x2 = await store.Get<MyClass1>(myKey1, null);
Assert.Equal(x1.myString1, x2.myString1);
Assert.Equal(x1.myString2, x2.myString2);

More examples can be found here [https://github.com/cs-util-com/cscore/blob/master/CsCore/xUnitTests/src/Plugins/CsCoreXUnitTests/com/csutil/tests/datastructures/KeyValueStoreTests.cs].

Immutable DataStore

	It uses the Redux syntax and core principles to not reinvent the wheel on a matured and well proven concept

	Enables undo/redo of all dispatched actions out of the box without any additional work

	Enables time travel to enable recording the full user interaction and replaying it later to get back into the same state

	Includes a thunk middleware to dispatch async tasks (e.g. talking to a remote server)

See this example for a first introduction [https://github.com/cs-util-com/cscore/blob/master/CsCore/xUnitTests/src/Plugins/CsCoreXUnitTests/com/csutil/tests/model/immutable/DataStoreExample1.cs#L11] including an example datamodel, example actions and some listeners that are informed when the datamodel changes.

See here for additional more complex examples [https://github.com/cs-util-com/cscore/tree/master/CsCore/xUnitTests/src/Plugins/CsCoreXUnitTests/com/csutil/tests/model/immutable] which include the other features like undo/redo, middlewares and server synchronization.

And if your model is not immutable from top to bottom, so if it was not designed from the
beginning to be impossible to change without a data store then
the example how to use Redux with mutable state [https://github.com/cs-util-com/cscore/blob/master/CsCore/xUnitTests/src/Plugins/CsCoreXUnitTests/com/csutil/tests/model/immutable/DataStoreExample4.cs]
will be relevant for you. Here an extract:

// A middleware that will allow to use mutable data in the data store:
var model = new MyAppState1() { user = new MyUser1() { name = "Carl" } };
var mutableMiddleware = Middlewares.NewMutableDataSupport<MyAppState1>();
var loggingMiddleware = Middlewares.NewLoggingMiddleware<MyAppState1>();
var store = new DataStore<MyAppState1>(MyReducer1, model, mutableMiddleware);
store.AddStateChangeListener(s => s.user, (MyUser1 theChangedUser) => { ... });
..
store.Dispatch(new ActionChangeUserName() { targetUserId = "1", newName = "Caaarl" });

Changes performed through the DataStore will allow the same state change listening as for immutable data models but
the big advantage to be sure that only the store can change the model is of course not given since
anyone could just do model.name = "Ohnoo" anywhere in the code. Working with internal or private setters for
all fields can get you closer to immutable safety but data structures like List you will not be able to protect the way an
ImmutableList [https://github.com/cs-util-com/cscore/blob/master/CsCore/xUnitTests/src/Plugins/CsCoreXUnitTests/com/csutil/tests/model/immutable/DataStoreExample1.cs#L58] does.

JsonMerger

Json merging and diffing logic [https://github.com/cs-util-com/cscore/blob/master/CsCore/xUnitTests/src/Plugins/CsCoreXUnitTests/com/csutil/tests/json/JsonDiffAndMergeTests.cs#L14] that helps to update an instance of a class using a Three-way merge [https://en.wikipedia.org/wiki/Merge_(version_control)#Three-way_merge]. Here an example:

MyClass1 originalObj = new MyClass1() { myString = "abc", myString2 = "def" };

MyClass1 copy1 = originalObj.DeepCopyViaJson();
copy1.myString = "abcd";
copy1.complexField = new MyClass1() { myString = "123", myString2 = "456" };
copy1.complexField.complexList = new List<MyClass1>() { new MyClass1() { myString = "listEntry1" } };

MyClass1 copy2 = originalObj.DeepCopyViaJson();
copy2.myString2 = "defg";

var merge = MergeJson.Merge(originalObj, copy1, copy2);
Assert.False(merge.hasMergeConflict);

// Parse the merged result back into a MyClass1 object:
MyClass1 mergeResult1 = merge.GetResult();

// The changes from both copies were merged correctly:
Assert.Equal(copy1.myString, mergeResult1.myString);
Assert.Equal(copy2.myString2, mergeResult1.myString2);

REST Extensions

// The property names are based on the https://httpbin.org/get json response:
class HttpBinGetResp {
 public string origin { get; set; }
 public Dictionary<string, object> headers { get; set; }
}

RestRequest request = new Uri("https://httpbin.org/get").SendGET();

// Send the request and parse the response into the HttpBinGetResp class:
HttpBinGetResp response = await request.GetResult<HttpBinGetResp>();
Log.d("Your external IP is " + response.origin);

A more complex REST example can be found in the WeatherReportExamples test class. It uses your IP to detect
the city name you are located in and then sends a weather report request to MetaWeather.com:

var ipLookupResult = await IpApiCom.GetResponse();
string yourCity = ipLookupResult.city;
var cityLookupResult = await MetaWeatherLocationLookup.GetLocation(yourCity);
int whereOnEarthIDOfYourCity = cityLookupResult.First().woeid;
var weatherReports = await MetaWeatherReport.GetReport(whereOnEarthIDOfYourCity);
var currentWeather = weatherReports.consolidated_weather.Map(r => r.weather_state_name);
Log.d("The weather today in " + yourCity + " is: " + currentWeather.ToStringV2());

IFileRef for file downloads

Handling file downloads is a common task that includes the download process itself but also generic topics like
communicating progress during the download and checking if the file is already downloaded (and has the
exact same content as the remote file). The IFileRef interface helps with these tasks and
provides common helper methods to download and cache files correctly based on their url:

var dir = EnvironmentV2.instance.GetOrAddTempFolder("SomeFolder1");
IFileRef f = new FileRef() { url = "https://.../someFile123.zip" };
await f.DownloadTo(dir, (float progress) => {
 Log.d($"Download {progress}% done");
}, useAutoCachedFileRef: true);
var downloadText = f.GetFileEntry(dir.FileSystem).LoadAs<string>();

For more examples see the ModelPersistenceTests here [https://github.com/cs-util-com/cscore/blob/master/CsCore/xUnitTests/src/Plugins/CsCoreXUnitTests/com/csutil/tests/model/ModelPersistenceTests.cs].

Action.AsThrottledDebounce

Debouncing [https://stackoverflow.com/a/25991510/10808596] will combine a series of sequential calls to a
function into a single call to that function. It ensures that one notification is made for an event that
fires multiple times.

This is useful if you want to run an action once after a frequent event was triggered once or
multiple times, this way events can be “collected” and then processed once. Real world examples where this
helps are:

	Every time the user moves the mouse an action is triggered, the logic should react when the user stopped
moving the mouse for 50ms.

	A local state of the app is changes 1000 times in 1 second and persisting these local changes to
the backend should only be executed once after modifying the local state stopped for minimum 1 second.

Here a code example how Action.AsThrottledDebounce can be used to realize debouncing:

int counter = 0;
bool allWereGood = true;
Action<string> action = (myStringParam) => {
 // Make sure the action is never called with "bad" being passed:
 if (myStringParam != "good") { allWereGood = false; }
 Interlocked.Increment(ref counter);
};
// Make the action throttled / debounced:
action = action.AsThrottledDebounce(delayInMs: 50);

// Call it multiple times with less then 50ms between the calls:
action("good"); // The first call will always be passed through
action("bad"); // This one will be delayed and not called because of the next:
action("good"); // This will be delayed for 50ms and then triggered because no additional call follows after it

Assert.Equal(2, counter);
Assert.True(allWereGood);

Debouncing becomes more relevant the more decoupled your different components are, if a lot of events are
send around in the system processing these events often can use debouncing to reduce processing load.

TaskV2 Helpers

Executing the same task multiple times can be helpful for network or file operations,
using exponential backoff delays [https://en.wikipedia.org/wiki/Exponential_backoff] is
a common best practice and using TaskV2.TryWithExponentialBackoff its easy to use this
approach without writing any manual delay code:

Stopwatch timer = Stopwatch.StartNew();
long finalTimingResult = await TaskV2.TryWithExponentialBackoff<long>(async () => {

 .. Here your async task that might fail and will be auto retried ..

 // In the first second of the test throw errors:
 // Will cause the task to be re-executed with exponential backoff delay
 if (timer.ElapsedMilliseconds < 1000) { throw new Exception(); }
 return timer.ElapsedMilliseconds;
});

Another useful Task related helper is the QueuedTaskScheduler to run multi threaded tasks in parallel but
with full control of how many tasks run concurrently. See TestRunWithTaskScheduler1 for details, here a short extract:

QueuedTaskScheduler scheduler = new QueuedTaskScheduler(TaskScheduler.Default, maxConcurrencyLevel: 1);

// Create both tasks at the same time:
Task t1 = TaskV2.Run(SomeAsyncTask1, new CancellationTokenSource(), scheduler);
Task<string> t2 = TaskV2.Run(SomeAsyncTask2, new CancellationTokenSource(), scheduler);

Assert.Equal(1, scheduler.GetRemainingScheduledTaskCount()); // 1 task started and 1 waiting

await t2;
// t1 never awaited but must be complete because maxConcurrencyLevel=1
Assert.Equal(0, scheduler.GetRemainingScheduledTaskCount());

Transducers

Transducers allow to do similar things as the functional concepts like Filter, Map and Reduce.
The main idea of transducers is to make this functional style as efficient as possible,
iterating through the target structure only once and bulding a pipeline still of the
same easy to understand functional building blocks.

A first example that uses only Filter will give a better idea how this looks like:

List<int> testData = new List<int>() { 1, 2, 3, 4, 5, 6, 7, 8 };

var filter1 = Transducers.NewFilter<int>(x => x > 4);
var filter2 = Transducers.NewFilter<int>(x => x % 2 != 0);
{
 List<int> result = testData.FilterToList(Transducers.Compose(filter1, filter2));
 Assert.Equal(2, result.Count()); // 5 and 7 will be left
 Assert.Equal(5, result.First());
 Assert.Equal(7, result.Last());
}
{ // without Transducers.Compose the filters have to be chained manually:
 List<int> result = testData.FilterToList(x => (filter1(filter2(x))));
 Assert.Equal(2, result.Count()); // 5 and 7 will be left
 Assert.Equal(5, result.First());
 Assert.Equal(7, result.Last());
}

A more complex example that uses Filter, Map and Reduce:

List<MyClass1> testData = newExampleList();

Transducer<MyClass1, MyClass1> filter1 = Transducers.NewFilter<MyClass1>(x => x != null);
Transducer<MyClass1, MyClass1> filter2 = Transducers.NewFilter<MyClass1>(x => x.someInt > 1);
Transducer<MyClass1, int> mapper = Transducers.NewMapper<MyClass1, int>(x => x.someInt);
Func<int, int, int> sumReducer = (total, x) => total + x;

// Create the reducer by composing the transducers:
var sum = testData.ReduceTo(x => filter1(filter2(mapper(x))), sumReducer, seed: 0);
Assert.Equal(6, sum);

More examples can be found in the TransducerTests.cs [https://github.com/cs-util-com/cscore/blob/master/CsCore/xUnitTests/src/com/csutil/tests/datastructures/TransducerTests.cs].
The syntax is still work in progress and I am happy for any suggestions how to improve this. And there are some
great related sources [https://jrsinclair.com/articles/2019/magical-mystical-js-transducers/] you can
read to learn more about Transducers.

Unity Component Examples

There are additional components specifically created for Unity, that will be explained below:

GameObject and MonoBehaviour Extensions

Some helper methods are added when the com.csutil namespace is imported to help with scene graph manipulation via code.
The added extension methods are GetParent, AddChild, GetOrAddChild, GetOrAddComponent, Destroy and IsDestroyed.
Here are some examples:

GameObject myGo = new GameObject();

// Adding children GameObjects via AddChild:
GameObject myChildGo = myGo.AddChild(new GameObject());

// Getting the parent of the child via GetParent:
Assert.AreSame(myGo, myChildGo.GetParent());

// Lazy-initialization of the GameObject in case it does not yet exist:
GameObject child1 = myGo.GetOrAddChild("Child 1");

// Lazy-initialization of the Mono in case it does not yet exist:
MyExampleMono1 myMono1 = child1.GetOrAddComponent<MyExampleMono1>();

// Calling the 2 methods again results always in the same mono:
var myMono1_ref2 = myGo.GetOrAddChild("Child 1").GetOrAddComponent<MyExampleMono1>();
Assert.AreSame(myMono1, myMono1_ref2);

myGo.Destroy(); // Destroy the gameobject
Assert.IsTrue(myGo.IsDestroyed()); // Check if it was destroyed

GameObject.Subscribe & MonoBehaviour.Subscribe

There are extension methods for both GameObjects and Behaviours which internally handle the lifecycle of their subscribers correctly.
If a GameObject for example is currently not active or was destroyed the published events will not reach it.

// GameObjects can subscribe to events:
var myGameObject = new GameObject("MyGameObject 1");
myGameObject.Subscribe("MyEvent1", () => {
 Log.d("I received the event because I'm active");
});

// Behaviours can subscribe to events too:
var myExampleMono = myGameObject.GetOrAddComponent<MyExampleMono1>();
myExampleMono.Subscribe("MyEvent1", () => {
 Log.d("I received the event because I'm enabled and active");
});

// The broadcast will reach both the GameObject and the MonoBehaviour:
EventBus.instance.Publish("MyEvent1");

MonoBehaviour Injection & Singletons

Often specific MonoBehaviours should only exist once in the complete scene,
for this scenario IoC.inject.GetOrAddComponentSingleton() and IoC.inject.GetComponentSingleton() can be used.

// Initially there is no MonoBehaviour registered in the system:
Assert.IsNull(IoC.inject.Get<MyExampleMono1>(this));

// Calling GetOrAddComponentSingleton will create a singleton:
MyExampleMono1 x1 = IoC.inject.GetOrAddComponentSingleton<MyExampleMono1>(this);

// Calling GetOrAddComponentSingleton again now returns the singleton:
MyExampleMono1 x2 = IoC.inject.GetOrAddComponentSingleton<MyExampleMono1>(this);
Assert.AreSame(x1, x2); // Both references point to the same object

// Calling the default IoC.inject.Get will also return the same singleton:
MyExampleMono1 x3 = IoC.inject.Get<MyExampleMono1>(this);
Assert.AreSame(x1, x3); // Both references point to the same object

Calling GetOrAddComponentSingleton will create a singleton. The parent gameobject of
this singleton will be created together with it in the scene. The location of the singleton will be:

"Singletons" GameObject -> "MyExampleMono1" GameObject -> MyExampleMono1

This way all created singletons will be created and grouped together in the
"Singletons" GameObject and accessible like any other MonoBehaviour as well.

Scriptable Object Injection & Singletons

Scriptable objects are ment as data containers created not at runtime but at editor time to
store configuration data and use it in the editor UI or load it during runtime.

	The scriptable object consists of the class that extends ScriptableObject and the
instance file that typically is created via the CreateAssetMenu [https://docs.unity3d.com/ScriptReference/CreateAssetMenuAttribute.html]
annotation or via an editor script (see ScriptableObject.CreateInstance [https://docs.unity3d.com/ScriptReference/ScriptableObject.CreateInstance.html]).

	This allows to have many parallel instance files for a scriptable object that contain
different configurations. These asset files can be loaded during runtime when placed in a
Resources folder [https://unity3d.com/learn/tutorials/topics/best-practices/resources-folder]
or can be linked directly in prefabs and Unity scenes in the Editor UI.

If scriptable object instances have to be dynamically loaded during runtime, the following example can help to avoid loading multiple different instances for the same ScriptableObject subclass into memory at once:

// Load a ScriptableObject instance and set it as the singleton:
var path = "MyExampleScriptableObject_Instance1.asset";
MyExampleScriptableObject x1 = ResourcesV2.LoadScriptableObjectInstance<MyExampleScriptableObject>(path);
IoC.inject.SetSingleton(x1);

// Now that the singleton is set this instance is always returned for the ScriptableObject class:
MyExampleScriptableObject x2 = IoC.inject.Get<MyExampleScriptableObject>(this);
Assert.AreSame(x1, x2);

The Link Pattern

Connecting prefabs created by designers with internal logic (e.g what should happen when the
user presses Button 1) often is beneficial to happen in a central place. To access all required
parts of the prefab the Link pattern and helper methods like gameObject.GetLinkMap() can be used:

// Load a prefab that contains Link MonoBehaviours:
GameObject prefab = ResourcesV2.LoadPrefab("ExamplePrefab1.prefab");

// Collect all Link MonoBehaviours in the prefab:
Dictionary<string, Link> links = prefab.GetLinkMap();

// In the Prefab Link-Monos are placed in all GameObjects that need
// to be accessed by the code. Links have a id to reference them:
// Via the Link.id the objects can quickly be accessed:
Assert.IsNotNull(links.Get<GameObject>("Button 1"));

// The GameObject "Button 1" contains a Button-Mono that can be accessed:
Button button1 = links.Get<Button>("Button 1");
button1.SetOnClickAction(delegate {
 Log.d("Button 1 clicked");
});

// The prefab also contains other Links in other places to quickly setup the UI:
links.Get<Text>("Text 1").text = "Some text";
links.Get<Toggle>("Toggle 1").SetOnValueChangedAction((isNowChecked) => {
 Log.d("Toggle 1 is now " + (isNowChecked ? "checked" : "unchecked"));
 return true;
});

The ViewStack Pattern

The ViewStack Pattern uses GameObjects as separate views stacked in a parent GameObject.
A ViewStack controller attached to this parent object controls switching between views.
Views can be hidden or shown through the ViewStack and new views can be loaded.
The main function of the ViewStack controller is to represent where the root of the ViewStack can
be found, which is especially relevant if multiple ViewStacks are stacked on top of each other.
A simple example for stacking multiple ViewStacks would be a main ViewStack that controls the
normal application flow and a second vie stack that is loaded together with one of the view prefabs that
represents a temporary tutorial or FUE that the user has to click through.

var viewStackGo = new GameObject();
var viewStack = viewStackGo.AddComponent<ViewStack>();

// Views can be added manually without using the ViewStack:
var view1 = viewStackGo.AddChild(new GameObject("View 1"));

// You can get the ViewStack using any child gameobject:
Assert.AreEqual(view1.GetViewStack(), viewStack);

// The latest active view can be accessed from the view stack:
Assert.AreEqual(view1, viewStack.GetLatestView());

// Views can also be added using the ViewStack.ShowView method:
var view2 = viewStack.ShowView(new GameObject("View 2"));

// Hide the old view 1 now that view 2 is on top:
view1.SetActiveV2(false);
Assert.IsFalse(view1.activeInHierarchy);
Assert.AreEqual(view2, viewStack.GetLatestView());

// The ViewStack can be used to return to the last view:
Assert.IsTrue(viewStack.SwitchBackToLastView(view2));

// View 2 will be removed from the view stack by destroying it:
Assert.IsTrue(view2.IsDestroyed());

// Now view 1 is active and visible again:
Assert.IsTrue(view1.activeInHierarchy);

MonoBehaviour.ExecuteDelayed & MonoBehaviour.ExecuteRepeated

// Execute a task after a defined time:
myMonoBehaviour.ExecuteDelayed(() => {
 Log.d("I am executed after 0.6 seconds");
}, delayInSecBeforeExecution: 0.6f);

// Execute a task multiple times:
myMonoBehaviour.ExecuteRepeated(() => {
 Log.d("I am executed every 0.3 seconds until I return false");
 return true;
}, delayInSecBetweenIterations: 0.3f, delayInSecBeforeFirstExecution: .2f);

Additionally there is myMono.StartCoroutinesInParallel(..) and myMono.StartCoroutinesSequetially(..),
see here [https://github.com/cs-util-com/cscore/blob/master/CsCore/UnityTests/Assets/Tests/CoroutineTests.cs#L103] for details

UnityWebRequest.SendV2

	It is recommended to use the Uri extension methods for requests (see here).

	If UnityWebRequest has to be used, then UnityWebRequest.SendV2() should be a good alternative.

	SendV2 creates the same RestRequest objects that the Uri extension methods create as well.

RestRequest request1 = UnityWebRequest.Get("https://httpbin.org/get").SendV2();
Task<HttpBinGetResp> requestTask = request1.GetResult<HttpBinGetResp>();
yield return requestTask.AsCoroutine();

HttpBinGetResp response = requestTask.Result;
Log.d("Your IP is " + response.origin);

// Alternatively the asynchronous callback in GetResult can be used:
UnityWebRequest.Get("https://httpbin.org/get").SendV2().GetResult<HttpBinGetResp>((result) => {
 Log.d("Your IP is " + response.origin);
});

PlayerPrefsV2

Since the Unity PlayerPrefs class uses static methods cscores normal approach with extension methods won’t work here,
thats why there is now PlayerPrefsV2 which extends PlayerPrefs and adds the following methods:

	PlayerPrefsV2.SetBool & PlayerPrefsV2.GetBool

	PlayerPrefsV2.SetStringEncrypted & PlayerPrefsV2.GetStringDecrypted

	PlayerPrefsV2.SetObject & PlayerPrefsV2.GetObject

// PlayerPrefsV2.SetBool and PlayerPrefsV2.GetBool example:
bool myBool = true;
PlayerPrefsV2.SetBool("myBool", myBool);
Assert.AreEqual(myBool, PlayerPrefsV2.GetBool("myBool", defaultValue: false));

// PlayerPrefsV2.SetStringEncrypted and PlayerPrefsV2.GetStringDecrypted example:
PlayerPrefsV2.SetStringEncrypted("mySecureString", "some text to encrypt", password: "myPassword123");

var decryptedAgain = PlayerPrefsV2.GetStringDecrypted("mySecureString", null, password: "myPassword123");
Assert.AreEqual("some text to encrypt", decryptedAgain);

// PlayerPrefsV2.SetObject and PlayerPrefsV2.GetObject example (uses JSON internally):
MyClass1 myObjectToSave = new MyClass1() { myString = "Im a string", myInt = 123 };
PlayerPrefsV2.SetObject("myObject1", myObjectToSave);

MyClass1 objLoadedAgain = PlayerPrefsV2.GetObject<MyClass1>("myObject1", defaultValue: null);
Assert.AreEqual(myObjectToSave.myInt, objLoadedAgain.myInt);

 // MyClass1 would look e.g. like this:
 class MyClass1 {
 public string myString;
 public int myInt;
 }

WebGL Helpers

Unity does not offer a way to expose some native browser functionality to the user. Therefore we created a concise JavaScript library and a C# wrapper that exposes commonly used browser functionality:

	Emitting Browser alerts

	Creating a popup when the user wants to quit a page

	Writing and retrieving data from the browser history

//Add the AlertManager Script to any GameObject. Then you can call
gameObj.GetComponent<AlertManager>().activateOnQuitPrompt()

//Or to deactivate it
gameObj.GetComponent<AlertManager>().deactivateOnQuitPrompt()

To use the functionality you need to install the WebGL module into your Unity project. There are Demo scenes to get familiar with the functionality.

Running xUnit tests in Unity

Initially I created this test runner to ensure that the xUnit tests I wrote for the pure C# components also
were all working when running them on an actual build application, especially on platforms like WebGL this
showed a few challanges with the async await Task syntax and some other edgecases. The basic idea was simple:

	Use the tests a small sample applications

	If the tests run correctly in a built application on the target platform the component can be correctly used on this platform

	A test runner [https://github.com/cs-util-com/cscore/blob/master/CsCore/CsCoreUnity/Plugins/CsCoreUnity/com/csutil/testing/XunitTestRunner.cs]
is needed to run the tests. In addition the xUnit classes like the Assert class need to be implemented [https://github.com/cs-util-com/cscore/blob/master/CsCore/CsCoreUnity/Plugins/CsCoreUnity/com/csutil/testing/xunitmocks/Assert.cs]
to be used in Unity

The outcome works pretty well and I managed to make all tests run correctly in WebGL which I used as a
platform that has a lot of very limiting restrictions like no multithreading, strict sandboxing for
file logic, persistance etc

	You want your xUnit tests to stay in your pure C# project but you can link them [https://github.com/cs-util-com/cscore/tree/master/CsCore/xUnitTests/src]
into your Unity project to include them there as well

	The xUnit runner needs a hint in which Assembly to search for your tests, for that it needs a
fully qualified type name of any of the classes in the tests.

	Select the XunitTestRunnerUi [https://github.com/cs-util-com/cscore/blob/master/CsCore/CsCoreUnity/Plugins/CsCoreUnity/com/csutil/testing/XunitTestRunnerScene/XunitTestRunnerUi.cs]
component in the XunitTestRunnerScene.unity [https://github.com/cs-util-com/cscore/tree/master/CsCore/CsCoreUnity/Plugins/CsCoreUnity/com/csutil/testing/XunitTestRunnerScene]
to set this fully qualified type name [https://github.com/cs-util-com/cscore/blob/master/CsCore/CsCoreUnity/Plugins/CsCoreUnity/com/csutil/testing/XunitTestRunnerScene/XunitTestRunnerUi.cs#L17]
(for example “MyNamespace.MyClass1, MyAssembly1”). This name it will use to start searching for all xUnit tests in your Assembly.

Additionally in your nUnit tests you can also use the xUnitTestRunner, e.g. if you want writing all your unit tests with xUnit and use the nUnit tests only to
trigger them. See the XunitTestRunnerTests.cs [https://github.com/cs-util-com/cscore/blob/master/CsCore/UnityTests/Assets/Plugins/CsCoreUnityTests/xUnitMocks/XunitTestRunnerTests.cs#L12]
to understand how to use the xUnitTestRunner via code.

📦 Getting started

Select the type of project you want to install cscore to:

	Pure C#/.net projects

	Unity projects

Install via NuGet

The NuGet package (for pure C#/.net projects) from nuget.org/packages/com.csutil.cscore [https://www.nuget.org/packages/com.csutil.cscore]
can be installed in multiple ways [https://docs.microsoft.com/en-us/nuget/consume-packages/ways-to-install-a-package],
for example via the dotnet CLI:

dotnet add package com.csutil.cscore

Or you manually add the following lines to the your .csproj file:

<Project Sdk="Microsoft.NET.Sdk">
 ...
 <ItemGroup>
 <PackageReference Include="com.csutil.cscore" Version="*" />
 </ItemGroup>
 ...
</Project>

After adding the references, install the packages by executing dotnet restore inside the project folder.

Install cscore into your Unity project

The cscore project has some components that are only usable in Unity projects.
There are different ways how to add cscore to your project, first the recommended way:

Using the Unity Package Manager (The recommended way)

	Open Window -> Package Manager

	Click on the + Icon

	Click “Add package from git URL…”

	This way you can add the 5 separate cscore building blocks in the following order:

	Insert https://github.com/cs-util-com/cscore.git?path=CsCore/PlainNetClassLib/src/Plugins

	(Required) Contains the pure C# classes

	Insert https://github.com/cs-util-com/cscore.git?path=CsCore/CsCoreUnity/Plugins

	(Required) Contains the Unity related classes

	Insert https://github.com/cs-util-com/cscore.git?path=CsCore/UnityTests/Assets/Plugins/CsCoreUnityDemoScenes

	(Optional) Contains demo scenes that can be dragged into your Assets folder to try them individually to learn about all features

	Insert https://github.com/cs-util-com/cscore.git?path=CsCore/xUnitTests/src/Plugins

	(Optional) Contains the xUnit tests which test cscore. These can also be run in Unity using the included XunitTestRunner.cs

	Insert https://github.com/cs-util-com/cscore.git?path=CsCore/UnityTests/Assets/Plugins/CsCoreUnityTests

	(Optional) Contains the Unity tests of cscore to run with the Unity test runner

	Insert https://github.com/cs-util-com/cscore.git?path=CsCore/CsCoreUnityWebGL/Plugins

	(Optional) Contains the Unity WebGL specific classes

The result will be that the manifest file which is located in your project at
YourUnityProject123/Packages/manifest.json has some new dependencies added.

Your can also manually open your manifest.json file with a text editor and add the lines by hand:

{
 "dependencies": {
 ...
 "com.csutil.cscore": "https://github.com/cs-util-com/cscore.git?path=CsCore/PlainNetClassLib/src/Plugins",
 "com.csutil.cscore.unity": "https://github.com/cs-util-com/cscore.git?path=CsCore/CsCoreUnity/Plugins",
 "com.csutil.cscore.tests": "https://github.com/cs-util-com/cscore.git?path=CsCore/xUnitTests/src/Plugins",
 "com.csutil.cscore.unity.demos": "https://github.com/cs-util-com/cscore.git?path=CsCore/UnityTests/Assets/Plugins/CsCoreUnityDemoScenes",
 "com.csutil.cscore.unity.tests": "https://github.com/cs-util-com/cscore.git?path=CsCore/UnityTests/Assets/Plugins/CsCoreUnityTests",
 "com.csutil.cscore.unity.webgl": "https://github.com/cs-util-com/cscore.git?path=CsCore/CsCoreUnityWebGL/Plugins",
 ...
 }
}

More details how the Unity package manager works can be found here:

	https://docs.unity3d.com/Manual/upm-manifestPkg.html

	https://docs.unity3d.com/Packages/com.unity.package-manager-ui@2.0/manual/index.html

	https://docs.unity3d.com/Manual/upm-git.html

	https://docs.unity3d.com/Manual/CustomPackages.html

Alternative ways to add cscore to your Unity project:

	From the Asset Store (https://assetstore.unity.com/packages/tools/integration/cscore-138254)

	From the /CsCore/UnityPackages folder [https://github.com/cs-util-com/cscore/raw/master/CsCore/UnityPackages/]

	From the master branch, you will have to link the src folders to your Unity project, see e.g. the linking bat script in

	cscore\CsCore\PlainNetClassLib\src\linkThisIntoAUnityProject.bat. This option makes sense e.g. if you want to submit pull requests to

	cscore. See also the section about Sym Links below.

Optional experimental Unity features

Some of the included features are disabled by default via the CSCORE_EXPERIMENTAL compile time define, to enable these features, go to
Player Settings -> Other Settings -> Scripting Define Symbols and add CSCORE_EXPERIMENTAL there. See the notes about
Scripting Define Symbols in the Unity Docs [https://docs.unity3d.com/Manual/PlatformDependentCompilation.html] for more details how this works.

💚 Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

[image: https://www.codetriage.com/cs-util-com/cscore/badges/users.svg]Open Source Helpers [https://www.codetriage.com/cs-util-com/cscore]

Repository structure and instructions

The cscore project is separated into multiple folders:

	PlainNetClassLib - Contains the pure .net logic

	CsCoreUnity - Contains the Unity specific logic

	CsCoreNet3.5Compat - Contains classes for older Unity projects (that do not use .net 4+ yet)

	xUnitTests - Contains the xunit tests that cover all functionality of the PlainNetClassLib folder

	UnityTests - Contains the Unity project with all NUnit tests that cover the Unity spefic CsCoreUnity features

	UnityPackages - Contains the ready to download Unity package that can alternatively be loaded via the AssetStore

Sym Links can be used to link the original PlainNetClassLib, CsCoreUnity and CsCoreNet3.5Compat folders into your target Unity project.
The sym link setup scripts (always named linkThisIntoAUnityProject) are located in the component folders (use the .bat on Win and .sh on Mac).

How to get in contact

[image: https://img.shields.io/twitter/follow/csutil_com.svg?style=for-the-badge&logo=twitter]Twitter [https://twitter.com/intent/follow?screen_name=csutil_com]
– [image: https://img.shields.io/discord/518684359667089409.svg?logo=discord&label=ask%20on%20discord&style=for-the-badge]Discord [https://discord.gg/UCqJjEU]
– [image: https://img.shields.io/gitter/room/csutil-com/community.svg?style=for-the-badge&logo=gitter-white]Gitter [https://gitter.im/csutil-com]

To stay updated via Email see https://www.csutil.com/updates

Core principles

	The main goal: Keep the API simple to use and provide an intuitive framework for common usecases.
Stick to essential features only to keep the library lightweight

	Use examples as a kind of test driven development but with focus on usablility of the APIs (tests must focus more on validating correctness but
examples can focus more on ease of use of the target API). Thats why each test class contains also a few methods that contain example usage

	Write as much of the logic in pure C# as reasonable, stay backwards compatible to .net 3.5 to support older Unity projects as well

	Use mutation testing to check for test coverage on a logic level

License

[image: https://img.shields.io/github/license/cs-util-com/cscore.svg?style=for-the-badge]

 This folder contains the cscore code that provides the Unity specific extensions

Visit https://github.com/cs-util-com/cscore for more details

Quick Outline

Developed by Chris Nolet (c) 2018

About

Quick Outline is a world-space outline tool, that adds a solid outline to any object.

It’s ideally suited for VR.

Many outline shaders work in screen space, which makes them slow – and they don’t support MSAA. If they do work in world space, they have ‘gaps’ on hard corners. Quick Outline addresses these issues.

Quick Outline was originally designed for VR, so it supports Instanced Stereo rendering and MSAA. It looks great in any HMD, and it won’t impact the frame rate.

	Designed for VR (including single pass)

	Supports MSAA

	Compatible with post-processing stack

	Multiple outline modes

	Lightweight and performant

Instructions

To add an outline to an object, drag-and-drop the Outline.cs script onto the object. The outline materials will be loaded at runtime.

You can also add outlines programmatically with:

var outline = gameObject.AddComponent<Outline>();

outline.OutlineMode = Outline.Mode.OutlineAll;
outline.OutlineColor = Color.yellow;
outline.OutlineWidth = 5f;

The outline script does a small amount of work in Awake(). For best results, use outline.enabled to toggle the outline. Avoid removing and re-adding the component if possible.

For large meshes, you may also like to enable ‘Precompute Outline’ in the editor. This will reduce the amount of work performed in Awake().

Troubleshooting

If the outline appears off-center, please try the following:

	Set ‘Read/Write Enabled’ on each model’s import settings.

	Disable ‘Optimize Mesh Data’ in the player settings.

 XR Line Renderer copyright © 2020 Unity Technologies ApS

Licensed under the Unity Companion License for Unity-dependent projects–see Unity Companion License [http://www.unity3d.com/legal/licenses/Unity_Companion_License].

Unless expressly provided otherwise, the Software under this license is made available strictly on an “AS IS” BASIS WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. Please review the license for details on these and other terms and conditions.

XR Line Renderer

An XR-Optimized line renderer that is also capable of producing very inexpensive glow effects. The XRLineRenderer mimics rendering with 3d capsules while only using two quads worth of geometry.

Setup and usage

	Import the XRLineRenderer package in your project.

	Add a XRLineRenderer or XRTrailRenderer component to your gameobject. The interface is nearly identical to the built in Unity Line and Trail Renderers.

	Create a new material using the XRLineRenderer shaders. You can find some examples in XRLineRenderer\Materials

	Apply this material to the mesh renderer of your XRLineRenderer or XRTrailRenderer.

VRLineRenderer Shader

You will find five shader variants under the XRLineRenderer category. Each of these corresponds to a shader blend mode.
Max Color and Min Color are the cheapest variants - if you are using the line renderer to mimic glow effects these variants also are stable in that color will not blow out.

Explanation of interesting shader parameters:
Line Rendering Levels - This allows control over the blend between the inner(most opaque/intense) part of the line and outer(transparent) area. Adjust the level curve to 0 will give a very glow-like effect while setting the cruve to 1 will make the line completely solid.

Line Scaled by Depth - Turning this option off means the line will stay the same thickness regardless of your distance from it. This is excellent for drafting lines and also for simulating glow. Radius minimum and maximum allow you to clamp this size adjustment.

Custom VR Line Rendering

The Scripts\Meshchain class provides everything you need to make your own custom line rendering constructs. XRLineRenderer and XRTrailRenderer emulate what the classic Unity components provide, but there are many more use cases out there.

Project Settings

If you plan on making changes to The XR Line Renderer and/or contributing back, then you’ll need to set the Asset Serialization property under Edit->Project Settings->Editor to Force Text

UI Shapes Kit

[image: UI Shapes Kit]create and edit UI directly in the editor, without the need for textures

Features

	create flat ui without textures

	resolution independent

	geometry based anti-aliasing

	geometry based shadows/glows

	custom Editor and Property Drawers

	clean geometry

	basic UVs

Supported Shapes

	Rectangles (with sharp and rounded corners)

	Ellipses

	Rings

	Arcs

	Lines (close/projected/rounded caps and corner rounding)

	N-gons (with corner rounding)

	Pixel-Perfect Lines

	2 Color Gradients

	Empty Graphic to use as a Raycast Target

Documentation

Online Documentation [http://uishapeskit.thisotherthing.co/home/]

Images

[image: editor]
[image: shapes]

 <no title>

 This folder contains the cscore code that provides the WebGL specific extensions for the Unity engine

Visit https://github.com/cs-util-com/cscore for more details

 <no title>

 This folder contains the cscore code that is pure c#

Visit https://github.com/cs-util-com/cscore for more details

 How to structure i18n files

How to structure i18n files

From https://stackoverflow.com/a/10364346/165106

I’ve found that the best overall strategy is to somewhat reproduce the file structure so that given any translation, I can immediately find where it was called from. This gives me some kind of context for making the translation.

The majority of application translations are found in views, so my biggest top level namespace is usually views.

I create sub namespaces for the controller name and the action name or partial being used ex :

	views.users.index.title

	views.articles._sidebar.header

Both of these examples should make it obvious what part of my app we’re translating and which file to look in to find it.

You mention navigation and buttons, if they are to be generic, then they belong in the views.application namespace just as do their view counterparts :

	views.application._main_nav.links.about_us - a link in our app’s main navigation partial

	views.application.buttons.save

	views.application.buttons.create - I have a bunch of these buttons ready to be used when needed

Flash messages are generated from the controller, so their top level namespace is… controllers! :)

We apply the same logic as we do to views :

	controllers.users.create.flash.success|alert|notice

Again if you wanted to provide generic flash messages like “Operation successful”, you would write something like this :

	controllers.application.create.flash.notice

Finally, keys can be anything that is valid YAML, but please stick to using periods . as separators and underscores _ between words as a matter of convention.

The only thing left to sort out now, is getting rails’ translations into its own namespace to clean up our top level :)

One extended example file

From https://github.com/svenfuchs/rails-i18n/blob/master/rails/locale/en.yml

en:
 activerecord:
 errors:
 messages:
 record_invalid: 'Validation failed: %{errors}'
 restrict_dependent_destroy:
 has_one: Cannot delete record because a dependent %{record} exists
 has_many: Cannot delete record because dependent %{record} exist
 date:
 abbr_day_names:
 - Sun
 - Mon
 - Tue
 - Wed
 - Thu
 - Fri
 - Sat
 abbr_month_names:
 -
 - Jan
 - Feb
 - Mar
 - Apr
 - May
 - Jun
 - Jul
 - Aug
 - Sep
 - Oct
 - Nov
 - Dec
 day_names:
 - Sunday
 - Monday
 - Tuesday
 - Wednesday
 - Thursday
 - Friday
 - Saturday
 formats:
 default: "%Y-%m-%d"
 long: "%B %d, %Y"
 short: "%b %d"
 month_names:
 -
 - January
 - February
 - March
 - April
 - May
 - June
 - July
 - August
 - September
 - October
 - November
 - December
 order:
 - :year
 - :month
 - :day
 datetime:
 distance_in_words:
 about_x_hours:
 one: about 1 hour
 other: about %{count} hours
 about_x_months:
 one: about 1 month
 other: about %{count} months
 about_x_years:
 one: about 1 year
 other: about %{count} years
 almost_x_years:
 one: almost 1 year
 other: almost %{count} years
 half_a_minute: half a minute
 less_than_x_seconds:
 one: less than 1 second
 other: less than %{count} seconds
 less_than_x_minutes:
 one: less than a minute
 other: less than %{count} minutes
 over_x_years:
 one: over 1 year
 other: over %{count} years
 x_seconds:
 one: 1 second
 other: "%{count} seconds"
 x_minutes:
 one: 1 minute
 other: "%{count} minutes"
 x_days:
 one: 1 day
 other: "%{count} days"
 x_months:
 one: 1 month
 other: "%{count} months"
 x_years:
 one: 1 year
 other: "%{count} years"
 prompts:
 second: Second
 minute: Minute
 hour: Hour
 day: Day
 month: Month
 year: Year
 errors:
 format: "%{attribute} %{message}"
 messages:
 accepted: must be accepted
 blank: can't be blank
 confirmation: doesn't match %{attribute}
 empty: can't be empty
 equal_to: must be equal to %{count}
 even: must be even
 exclusion: is reserved
 greater_than: must be greater than %{count}
 greater_than_or_equal_to: must be greater than or equal to %{count}
 inclusion: is not included in the list
 invalid: is invalid
 less_than: must be less than %{count}
 less_than_or_equal_to: must be less than or equal to %{count}
 model_invalid: 'Validation failed: %{errors}'
 not_a_number: is not a number
 not_an_integer: must be an integer
 odd: must be odd
 other_than: must be other than %{count}
 present: must be blank
 required: must exist
 taken: has already been taken
 too_long:
 one: is too long (maximum is 1 character)
 other: is too long (maximum is %{count} characters)
 too_short:
 one: is too short (minimum is 1 character)
 other: is too short (minimum is %{count} characters)
 wrong_length:
 one: is the wrong length (should be 1 character)
 other: is the wrong length (should be %{count} characters)
 template:
 body: 'There were problems with the following fields:'
 header:
 one: 1 error prohibited this %{model} from being saved
 other: "%{count} errors prohibited this %{model} from being saved"
 helpers:
 select:
 prompt: Please select
 submit:
 create: Create %{model}
 submit: Save %{model}
 update: Update %{model}
 number:
 currency:
 format:
 delimiter: ","
 format: "%u%n"
 precision: 2
 separator: "."
 significant: false
 strip_insignificant_zeros: false
 unit: "$"
 format:
 delimiter: ","
 precision: 3
 separator: "."
 significant: false
 strip_insignificant_zeros: false
 human:
 decimal_units:
 format: "%n %u"
 units:
 billion: Billion
 million: Million
 quadrillion: Quadrillion
 thousand: Thousand
 trillion: Trillion
 unit: ''
 format:
 delimiter: ''
 precision: 3
 significant: true
 strip_insignificant_zeros: true
 storage_units:
 format: "%n %u"
 units:
 byte:
 one: Byte
 other: Bytes
 eb: EB
 gb: GB
 kb: KB
 mb: MB
 pb: PB
 tb: TB
 percentage:
 format:
 delimiter: ''
 format: "%n%"
 precision:
 format:
 delimiter: ''
 support:
 array:
 last_word_connector: ", and "
 two_words_connector: " and "
 words_connector: ", "
 time:
 am: am
 formats:
 default: "%a, %d %b %Y %H:%M:%S %z"
 long: "%B %d, %Y %H:%M"
 short: "%d %b %H:%M"
 pm: pm

 AsyncLock: An async/await-friendly lock

AsyncLock: An async/await-friendly lock

[image: https://img.shields.io/nuget/v/NeoSmart.AsyncLock.svg]NuGet [https://www.nuget.org/packages/NeoSmart.AsyncLock]

AsyncLock is an async/await-friendly lock implementation for .NET Standard, making writing code like the snippet below (mostly) possible:

lock (_lockObject)
{
 await DoSomething();
}

Unlike most other so-called “async locks” for C#, AsyncLock is actually designed to support the programming paradigm lock encourages, not just the technical elements. You can read more about the pitfalls with other so-called asynchronous locks and the difficulties of creating a reentrance-safe implementation here [https://neosmart.net/blog/2017/asynclock-an-asyncawait-friendly-locking-library-for-c-and-net/].

With AsyncLock, you don’t have to worry about which thread is running what code in order to determine whether or not your locks will have any effect or if they’ll be bypassed completely, you just write code the way you normally would and you’ll find AsyncLock to correctly marshal access to protected code segments.

Using AsyncLock

There are only three functions to familiarize yourself with: the AsyncLock() constructor and the two locking variants Lock()/LockAsync() .

AsyncLock() creates a new asynchronous lock. A separate AsyncLock should be used for each “critical operation” you will be performing. (Or you can use a global lock just like some people still insist on using global mutexes and semaphores. We won’t judge too harshly.)

Everywhere you would normally use lock (_lockObject) you will now use one of

	using (_lock.Lock()) or

	using (await _lock.LockAsync())

That’s all there is to it!

Async-friendly locking by design

Much like theSemaphoreSlim class, AsyncLock offers two different “wait” options, a blocking Lock() call and the asynchronous LockAsync() call. The utmost scare should be taken to never call LockAsync() without an await before it, for obvious reasons.

Upon using LockAsync(), AsyncLock will attempt to obtain exclusive access to the lock. Should that not be possible in the current state, it will cede its execution slot and return to the caller, allowing the system to marshal resources efficiently as needed without blocking until the lock becomes available. Once the lock is available, the AsyncLock() call will resume, transferring execution to the protected section of the code.

AsyncLock usage example

private class AsyncLockTest
{
 var _lock = new AsyncLock();

 void Test()
 {
 // The code below will be run immediately (likely in a new thread)
 Task.Run(async () =>
 {
 // A first call to LockAsync() will obtain the lock without blocking
 using (await _lock.LockAsync())
 {
 // A second call to LockAsync() will be recognized as being
 // reentrant and permitted to go through without blocking.
 using (await _lock.LockAsync())
 {
 // We now exclusively hold the lock for 1 minute
 await Task.Delay(TimeSpan.FromMinutes(1));
 }
 }
 }).Wait(TimeSpan.FromSeconds(30));

 // This call to obtain the lock is made synchronously from the main thread.
 // It will, however, block until the asynchronous code which obtained the lock
 // above finishes.
 using (_lock.Lock())
 {
 // Now we have obtained exclusive access.
 // <Safely perform non-thread-safe operation safely here>
 }
 }
}

 Reference

 The Diff Match and Patch libraries offer robust algorithms to perform the
operations required for synchronizing plain text.

	Diff:

	Compare two blocks of plain text and efficiently return a list of differences.

	Diff Demo [https://neil.fraser.name/software/diff_match_patch/demos/diff.html]

	Match:

	Given a search string, find its best fuzzy match in a block of plain text. Weighted for both accuracy and location.

	Match Demo [https://neil.fraser.name/software/diff_match_patch/demos/match.html]

	Patch:

	Apply a list of patches onto plain text. Use best-effort to apply patch even when the underlying text doesn’t match.

	Patch Demo [https://neil.fraser.name/software/diff_match_patch/demos/patch.html]

Originally built in 2006 to power Google Docs, this library is now available in C++, C#, Dart, Java, JavaScript, Lua, Objective C, and Python.

Reference

	API [https://github.com/google/diff-match-patch/wiki/API] - Common API across all languages.

	Line or Word Diffs [https://github.com/google/diff-match-patch/wiki/Line-or-Word-Diffs] - Less detailed diffs.

	Plain Text vs. Structured Content [https://github.com/google/diff-match-patch/wiki/Plain-Text-vs.-Structured-Content] - How to deal with data like XML.

	Unidiff [https://github.com/google/diff-match-patch/wiki/Unidiff] - The patch serialization format.

	Support [https://groups.google.com/forum/#%21forum/diff-match-patch] - Newsgroup for developers.

Languages

Although each language port of Diff Match Patch uses the same API, there are some language-specific notes.

	C++ [https://github.com/google/diff-match-patch/wiki/Language:-Cpp]

	C# [https://github.com/google/diff-match-patch/wiki/Language:-C%23]

	Dart [https://github.com/google/diff-match-patch/wiki/Language:-Dart]

	Java [https://github.com/google/diff-match-patch/wiki/Language:-Java]

	JavaScript [https://github.com/google/diff-match-patch/wiki/Language:-JavaScript]

	Lua [https://github.com/google/diff-match-patch/wiki/Language:-Lua]

	Objective-C [https://github.com/google/diff-match-patch/wiki/Language:-Objective-C]

	Python [https://github.com/google/diff-match-patch/wiki/Language:-Python]

A standardized speed test tracks the relative performance of diffs [https://docs.google.com/spreadsheets/d/1zpZccuBpjMZTvL1nGDMKJc7rWL_m_drF4XKOJvB27Kc/edit#gid=0] in each language.

Algorithms

This library implements Myer’s diff algorithm [https://neil.fraser.name/writing/diff/myers.pdf] which is generally considered to be the best general-purpose diff. A layer of pre-diff speedups and post-diff cleanups [https://neil.fraser.name/writing/diff/] surround the diff algorithm, improving both performance and output quality.

This library also implements a Bitap matching algorithm [https://neil.fraser.name/writing/patch/bitap.ps] at the heart of a flexible matching and patching strategy [https://neil.fraser.name/writing/patch/].

 Introduction

Introduction

A lightweight zero-dependency C# port of the Fuse.js fuzzy-search library created by @krisk [https://github.com/krisk] at https://github.com/krisk/Fuse

I ported this to C# because I couldn’t find anything like it, and because I love Fuse.js.

Licenses

You can find the original license in the LICENSE.ORIGINAL file, and the license for this derivative work in the LICENSE.DERIVATIVE file.

Documentation

At this time there is no documentation for Fuse.NET, but as it is a direct port of Fuse.js, you can find all the information you need on the Fuse.js website at https://fusejs.io/

Example Usage

public struct Book
{
	public string title;
	public string author;
}

// This test data was taken from the fixtures in Fuse.js.
var input = new List<Book>();

input.Add(new Book
{
	title = "The Code of The Wooster",
	author = "Bob James"
});

input.Add(new Book
{
	title = "The Wooster Code",
	author = "Rick Martin"
});

input.Add(new Book
{
	title = "The Code",
	author = "Jimmy Charles"
});

input.Add(new Book
{
	title = "Old Man's War",
	author = "John Scalzi"
});

input.Add(new Book
{
	title = "The Lock Artist",
	author = "Steve Hamilton"
});

var opt = new FuseOptions();

opt.includeMatches = true;
opt.includeScore = true;

// Here we search through a list of `Book` types but you could search through just a list of strings.
var fuse = new Fuse<Book>(input, opt);

fuse.AddKey("title");
fuse.AddKey("author");

var output = fuse.Search("woo");

output.ForEach((a) =>
{
	Debug.Log(a.item.title + ": " + a.item.author);
	Debug.Log("Score: " + a.score);

	if (a.matches != null)
	{
		a.matches.ForEach((b) =>
		{
			Debug.Log("{Match}");
			Debug.Log(b.key + ": " + b.value + " (Indicies: " + b.indicies.Count + ")");
		});
	}
});

Installation

Drag and drop the Fuse.NET folder directly into your C# project.

Contributing

Contributions are welcome, if you have one to make please don’t hestitate to create a pull request.

 jsondiffpatch.net

jsondiffpatch.net

[image: https://ci.appveyor.com/api/projects/status/aavhn0lwas0j29gy?svg=true]Build status [https://ci.appveyor.com/project/wbish/jsondiffpatch-net]
[image: https://img.shields.io/nuget/v/JsonDiffPatch.Net.svg]NuGet [https://www.nuget.org/packages/JsonDiffPatch.Net/]

JSON object diffs and reversible patching (jsondiffpatch [https://github.com/benjamine/jsondiffpatch] compatible)

Usage

The library has support for the following 3 operations: Diff, Patch and Unpatch.

Diff

Diff two json objects

 var jdp = new JsonDiffPatch();
 var left = JToken.Parse(@"{ ""key"": false }");
 var right = JToken.Parse(@"{ ""key"": true }");

 JToken patch = jdp.Diff(left, right);

 Console.WriteLine(patch.ToString());

 // Output:
 // {
 // "key": [false, true]
 // }

Patch

Patch a left object with a patch document

 var jdp = new JsonDiffPatch();
 var left = JToken.Parse(@"{ ""key"": false }");
 var right = JToken.Parse(@"{ ""key"": true }");
 JToken patch = jdp.Diff(left, right);

 var output = jdp.Patch(left, patch);

 Console.WriteLine(output.ToString());

 // Output:
 // {
 // "key": true
 // }

Unpatch

Unpatch a right object with a patch document

 var jdp = new JsonDiffPatch();
 var left = JToken.Parse(@"{ ""key"": false }");
 var right = JToken.Parse(@"{ ""key"": true }");
 JToken patch = jdp.Diff(left, right);

 var output = jdp.Unpatch(right, patch);

 Console.WriteLine(output.ToString());

 // Output:
 // {
 // "key": false
 // }

Advanced Usage

JsonDiffPatch.Net is designed to handle complex diffs by producing a compact diff object with enough information to patch and unpatch relevant JSON objects. The following are some of the most common cases you may hit when generating a diff:

	Adding, Removing a property from an object

	Changing the property value or even value type

	Inserting and shifting elements in an array

	Efficient string diffing using google-diff-match-patch

	Nested object diffs

The full JSON patch document format is documented at https://github.com/benjamine/jsondiffpatch.

var left =
{
 "id": 100,
 "revision": 5,
 "items": [
 "car",
 "bus"
],
 "tagline": "I can't do it. This text is too long for me to handle! Please help me JsonDiffPatch!",
 "author": "wbish"
}

var right =
{
 "id": 100,
 "revision": 6,
 "items": [
 "bike",
 "bus",
 "car"
],
 "tagline": "I can do it. This text is not too long. Thanks JsonDiffPatch!",
 "author": {
 "first": "w",
 "last": "bish"
 }
}

var jdp = new JsonDiffPatch();
var output = jdp.Diff(left, right);

// Output:
{
 "revision": [// Changed the value of a property
 5, // Old value
 6 // New value
],
 "items": { // Inserted and moved items in an array
 "0": [
 "bike"
],
 "_t": "a", // indicates this node is an array (not an object)
 "_1": [
 "",
 1,
 3
]
 },
 "tagline": [// A long string diff using google-diff-match-patch
 "@@ -2,10 +2,8 @@\n can\n-'t\n do \n@@ -23,49 +23,28 @@\n is \n+not \n too long\n- for me to handle! Please help me\n+. Thanks\n Jso\n",
 0,
 2
],
 "author": [// Changed the type of the author property from string to object
 "wbish",
 {
 "first": "w",
 "last": "bish"
 }
]
}

Installing

Install from jsondiffpatch.net [https://www.nuget.org/packages/JsonDiffPatch.Net/] nuget website, or run the following command:

Install-Package JsonDiffPatch.Net

Attributions

	jsondiffpatch [https://github.com/benjamine/jsondiffpatch]

	google-diff-match-patch [https://code.google.com/archive/p/google-diff-match-patch/]

	Newtonsoft.Json [https://www.nuget.org/packages/Newtonsoft.Json/]

 MarkdownSharp

 Converting markdown to HTML
From https://github.com/StackExchange/MarkdownSharp

MarkdownSharp

Open source C# implementation of Markdown [https://daringfireball.net/projects/markdown/] processor, as featured on Stack Overflow [https://stackoverflow.com/].

This port is based heavily on the original Perl 1.0.1 and Perl 1.0.2b8 implementations of Markdown, with bits and pieces of the apparently much better maintained PHP Markdown [https://michelf.ca/projects/php-markdown/] folded into it. There are a few Stack Overflow specific modifications (which are all configurable, and all off by default). I’d like to ensure that this version stays within shouting distance of the Markdown “specification”, such as it is…

Note: this build is kept somewhat up to date for those using it (and maintaining old input => result expectations), but CommonMark [https://commonmark.org/] implementations are what any new users of markdown should look at. The spec is much more strict and deterministic across all cases.

 SharpZipLib

SharpZipLib [image: https://ci.appveyor.com/api/projects/status/wuf8l79mypqsbor3/branch/master?svg=true]Build status [https://ci.appveyor.com/project/icsharpcode/sharpziplib/branch/master] [image: https://img.shields.io/nuget/v/SharpZipLib.svg]NuGet Version [https://www.nuget.org/packages/SharpZipLib/]

Introduction

SharpZipLib (#ziplib, formerly NZipLib) is a compression library that supports Zip files using both stored and deflate compression methods, PKZIP 2.0 style and AES encryption, tar with GNU long filename extensions, GZip, zlib and raw deflate, as well as BZip2. Zip64 is supported while Deflate64 is not yet supported. It is implemented as an assembly (installable in the GAC), and thus can easily be incorporated into other projects (in any .NET language). The creator of SharpZipLib put it this way: “I’ve ported the zip library over to C# because I needed gzip/zip compression and I didn’t want to use libzip.dll or something like this. I want all in pure C#.”

SharpZipLib was originally ported from the GNU Classpath [http://www.gnu.org/software/classpath/] java.util.zip library for use with SharpDevelop [http://www.icsharpcode.net/OpenSource/SD], which needed gzip/zip compression. bzip2 compression and tar archiving were added later due to popular demand.

The SharpZipLib homepage [http://icsharpcode.github.io/SharpZipLib/] has precompiled libraries available for download, API documentation [https://icsharpcode.github.io/SharpZipLib/help/api/index.html], release history [https://github.com/icsharpcode/SharpZipLib/wiki/Release-History], samples and more.

License

This software is now released under the MIT License [https://opensource.org/licenses/MIT]. Please see issue #103 [https://github.com/icsharpcode/SharpZipLib/issues/103] for more information on the relicensing effort.

Previous versions were released under the GNU General Public License, version 2 [http://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html] with an exception [http://www.gnu.org/software/classpath/license.html] which allowed linking with non-GPL programs.

Namespace layout

Module	Namespace
:————————-:	:————————————————-
BZip2 implementation	ICSharpCode.SharpZipLib.BZip2.*
Checksum implementation	ICSharpCode.SharpZipLib.Checksum.*
Core utilities / interfaces	ICSharpCode.SharpZipLib.Core.*
Encryption implementation	ICSharpCode.SharpZipLib.Encryption.*
GZip implementation	ICSharpCode.SharpZipLib.GZip.*
LZW implementation	ICSharpCode.SharpZipLib.Lzw.*
Tar implementation	ICSharpCode.SharpZipLib.Tar.*
ZIP implementation	ICSharpCode.SharpZipLib.Zip.*
Inflater/Deflater	ICSharpCode.SharpZipLib.Zip.Compression.*
Inflater/Deflater streams	ICSharpCode.SharpZipLib.Zip.Compression.Streams.*

Credits

SharpZipLib was initially developed by Mike Krüger [http://www.icsharpcode.net/pub/relations/krueger.aspx]. Past maintainers are John Reilly, David Pierson and Neil McNeight.

And thanks to all the people that contributed features, bug fixes and issue reports.

 StbImageLib

 From https://github.com/StbSharp/SafeStbImageSharp

StbImageLib

[image: https://img.shields.io/nuget/v/StbImageLib.svg]NuGet [https://www.nuget.org/packages/StbImageLib/] [image: https://ci.appveyor.com/api/projects/status/w6os3e5th6p529la?svg=true]Build status [https://ci.appveyor.com/project/RomanShapiro/stbimagelib] [image: https://img.shields.io/discord/628186029488340992.svg]Chat [https://discord.gg/ZeHxhCY]

StbImageLib is safe and refactored version of StbImageSharp [https://github.com/StbSharp/StbImageSharp].

Adding Reference

There are two ways of referencing StbImageLib in the project:

	Through nuget: https://www.nuget.org/packages/StbImageLib/

	As submodule:

a. git submodule add https://github.com/StbSharp/StbImageLib.git

b. Now there are two options:

	Add StbImageLib/src/StbImageLib/StbImageLib.csproj to the solution

	Include *.cs from StbImageLib/src/StbImageLib directly in the project. In this case, it might make sense to add STBSHARP_INTERNAL build compilation symbol to the project, so StbImageLib classes would become internal.

Usage

Following code loads image from stream and converts it to 32-bit RGBA:

	ImageResult image;
	using (var stream = File.OpenRead(path))
	{
		image = ImageResult.FromStream(stream, ColorComponents.RedGreenBlueAlpha);
	}

If you are writing MonoGame application and would like to convert that data to the Texture2D. It could be done following way:

Texture2D texture = new Texture2D(GraphicsDevice, image.Width, image.Height, false, SurfaceFormat.Color);
texture.SetData(image.Data);

Or if you are writing WinForms app and would like StbSharp resulting bytes to be converted to the Bitmap. The sample code is:

byte[] data = image.Data;
// Convert rgba to bgra
for (int i = 0; i < x*y; ++i)
{
	byte r = data[i*4];
	byte g = data[i*4 + 1];
	byte b = data[i*4 + 2];
	byte a = data[i*4 + 3];

	data[i*4] = b;
	data[i*4 + 1] = g;
	data[i*4 + 2] = r;
	data[i*4 + 3] = a;
}

// Create Bitmap
Bitmap bmp = new Bitmap(_loadedImage.Width, _loadedImage.Height, PixelFormat.Format32bppArgb);
BitmapData bmpData = bmp.LockBits(new Rectangle(0, 0, _loadedImage.Width, _loadedImage.Height), ImageLockMode.WriteOnly,
	bmp.PixelFormat);

Marshal.Copy(data, 0, bmpData.Scan0, bmpData.Stride*bmp.Height);
bmp.UnlockBits(bmpData);

Reliability & Performance

This repo contains special app that was written to measure reliability & performance of StbImageLib in comparison to the original stb_image.h: https://github.com/StbSharp/StbImageLib/tree/master/tests/StbImageSharp.Testing

It goes through every image file in the specified folder and tries to load it 10 times with StbImageLib, then 10 times with C++/CLI wrapper over theoriginal stb_image.h(Stb.Native). Then it compares whether the results are byte-wise similar and also calculates loading times. Also it sums up and reports loading times for each method.

I’ve used it over following set of images: https://github.com/StbSharp/TestImages

The byte-wise comprarison results are similar for both methods(except a few 16-bit PNGs and PSDs that arent supported yet by StbImageLib).

And performance comparison results are:

8 -- Total StbSharp Loading From memory Time: 57917 ms
8 -- Total Stb.Native Loading From memory Time: 39427 ms

License

Public Domain

Credits

	stb [https://github.com/nothings/stb]

 <no title>

 Copied from https://www.nuget.org/packages/System.Collections.Immutable/ to be used by Unity.
Use the version in the lib/portable-net45+win8+wp8+wpa81 folder!

 UltraLiteDB - A bare-bones C# .NET Key-value Store in a single database file, intended for use in Unity

 From https://github.com/rejemy/UltraLiteDB
Currently using version UltraLiteDB 1.4.2

UltraLiteDB - A bare-bones C# .NET Key-value Store in a single database file, intended for use in Unity

UltraLiteDB is a trimmed down version of LiteDB 4.0 (http://www.litedb.org). Anything that needs Linq or dynamic code generation has been removed to make it work in Unity’s IL2CPP AoT runtime environment. Some additional features have been removed to reduce code footprint. What’s left is a very small, fast key-value store that lets you save and load BSON-encoded data in any Unity environment.

Major features missing from LiteDB

	Due to linq limitations, there are no expressions. Queries and indexes are limited to simple top level fields only.

	Thread and file locking overhead has been removed, databases must be accessed from a single thread, which should not be an issue in Unity.

	File storage and streaming have been removed as not needed in a Unity setting.

	No cross-collection document referencing

	No interactive shell

So what’s still there?

	The POCO to BSON mapper allows you to BSON-encode most any C# object or struct with little work.

	A very fast way to save, load and update BSON-encoded data into a compact, encrypted, managable single file.

	Basic queries on the primary key and user-created indexes (all, less than, greater than, between, in, etc)

	Simple API similar to MongoDB

	File format compatibility with LiteDB

	100% C# code for .NETStandard 2.0 Unity preset in a single DLL (~172 kb)

	ACID in document/operation level

	Data recovery after write failure (journal mode)

	Datafile encryption using DES (AES) cryptography

	Open source and free for everyone - including commercial use

	What, you need more than that?

Use case

This is a great library to use for any project that needs to store lots of mutable data in a convenient and accessible way. For example:

	Large save game files that have long lists of completed quests, NPC flags, explored area state, etc

	A Minecraft-like game where a vast world can be edited by the user and must be persisted to disk

	Game statistics, win/loss records, gameplay recording sessions

It could also be useful for large amounts of read-only data as well, where you need to locate records in a data-file too large to keep in memory all the time:

	Large dialog trees

	Monster/item stats

	Quest scripts

Documentation

For basic CRUD operations, the LiteDB documentation [https://github.com/mbdavid/LiteDB/wiki] largely applies to UltraLiteDB.

The biggest difference is that any query or index method using a linq expression method are missing.

Installing in a Unity project

Download the UltraLiteDB.dll from the Releases page [https://github.com/rejemy/UltraLiteDB/releases] and put it in the ./Assets/Plugins folder of your Unity project. That should be it!

How to use UltraLiteDB

A quick example for storing and searching documents:

using UltraLiteDB;

void DatabaseTest()
{
 // Open database (or create if doesn't exist)
 var db = new UltraLiteDatabase("MyData.db")

 // Get a collection
 var col = db.GetCollection("savegames");

 // Create a new character document
 var character = new BsonDocument();
 character["Name"] = "John Doe";
 character["Equipment"] = new string[] { "sword", "gnome hat" };
 character["Level"] = 1;
 character["IsActive"] = true;
	
 // Insert new customer document (Id will be auto generated)
 BsonValue id = col.Insert(character);
 // new Id has also been added to the document at character["_id"]

 // Update a document inside a collection
 character["Name"] = "Joana Doe";
 col.Update(character);

 // Insert a document with a manually chosen Id
 var character2 = new BsonDocument();
 character2["_id"] = 10;
 character2["Name"] = "Test Bob";
 character2["Level"] = 10;
 character2["IsActive"] = true;
 col.Insert(character2);

 // Load all documents
 List<BsonDocument> allCharacters = new List<BsonDocument>(characters.FindAll());

 // Delete something
 col.Delete(10);

 // Upsert (Update if present or insert if not)
 col.Upsert(character);

 // Don't forget to cleanup!
 db.Dispose();
}

To be done

The BsonDocument class generates garbage every time you load or save to the database. I’m investigating allowing custom allocators and object reuse pools to reduce garbage generation from load and save operations. I don’t think this library can be made 100% garbage free, but there is currently much room for improvement.

Building

To build UltraLiteDB yourself:

	Make sure you have a recent .NET Core SDK installed (https://dotnet.microsoft.com/download)

	Download or clone this repository

	dotnet build -c Release

	Your new DLL is at ./UltraLiteDB/bin/Release/netstandard2.0/UltraLiteDB.dll

License

MIT [http://opensource.org/licenses/MIT]

Copyright (c) 2017 - Maurício David

Thanks

This project is entirely built upon Maurício David’s excellent LiteDB, and would not exist without it.

 Changelog

Changelog

0.14.0 (4 Feb 2022)

	Don’t throw on fs.CreateDirectory("/") (#61)

	Fix AggregateFileSystem not following fallbacks (#64)

0.13.0 (31 Aug 2021)

	Fix PhysicalFileSystem on .NET Framework 4

0.12.0 (31 May 2021)

	Breaking change: Add new IFileSystem.EnumerateItems to optimize scanning by fetching important attributes along the scan (e.g length, file or directory…etc.).

	Breaking change: For performance reasons, MountFileSystem/AggregateFileSystem are no longer thread safe when modifying their mounts/filesystems.

	Breaking change: MountFileSystem/AggregateFileSystem when enumerating files are no longer discarding files with different case sensitive names. Previously a.txt and A.txt would be considered as a same file.

0.11.0 (24 Dec 2020)

	Add overload methods to FileSystemExtensions to not copy attributes from source filesystem.

0.10.0 (23 Dec 2020)

	Improve performance of AggregateFileSystem single file resolution

	Add AggregateFileSystem.FindFirstFileSystemEntry

0.9.1 (17 Jun 2020)

	Fix AggregateFileSystem.Watch to watch only existing folders from sources.

0.9.0 (17 Jun 2020)

	Add FileSystem.Name for debugging purpose.

	Add DebuggerDisplay/DebuggerTypeProxy to all FileSystem

	Breaking change: Renaming of protected ComposeFileSystem.NextFileSystem to ComposeFileSystem.Fallback

	Breaking Change: FileSystem.CopyFileCross destination IFileSystem moved to 3rd parameter instead of 2nd.

0.8.0 (19 Apr 2020)

	Add extension method to copy filesystem or folder to another filesystem subfolder.

	Fix issue with SubFileSystem not throwing an exception when mounting a windows filesystem with an incorrect uppercase drive letter (e.g /mnt/C)

0.7.6 (28 Jan 2020)

	Fix assembly to use Portable debug info.

0.7.5 (28 Jan 2020)

	Make UPath struct readonly.

	Don’t throw if Dispose is being called multiple times on a FileSystem via (PR #38) [https://github.com/xoofx/zio/pull/38].

	Add SourceLink support.

0.7.4 (11 May 2019)

	Add MountFS.TryGetMount and MountFS.TryGetMountName via (PR #36) [https://github.com/xoofx/zio/pull/36]

0.7.3 (02 Feb 2019)

	Properly show mount paths when enumerating MountFS (fixes #28) (PR #29) [https://github.com/xoofx/zio/pull/29]

	Don’t throw when enumerating root on empty MountFS (PR #31) [https://github.com/xoofx/zio/pull/31]

	Fix IFileSystemWatcher instances not being removed from AggregateFSWs (PR #32) [https://github.com/xoofx/zio/pull/32]

	Fix dispose not removing the watchers from aggregate and mount FS (PR #34) [https://github.com/xoofx/zio/pull/34]

0.7.2 (04 Apr 2018)

	Fix MountFS watchers having incorrect paths when created in Mount() (PR #26) [https://github.com/xoofx/zio/pull/26]

0.7.1 (12 Jan 2018)

	Add CanWatch impls to physical and composite FS (PR #24) [https://github.com/xoofx/zio/pull/24]

0.7.0 (11 Jan 2018)

	Use dispose for all aggregate file systems. Add support for owned FS (PR #22) [https://github.com/xoofx/zio/pull/22]

	Fix SearchPattern special case for Windows. Via (PR #23) [https://github.com/xoofx/zio/pull/23]

	Correct MountFS watch behavior for arbitrary mounts. Via (PR #17) [https://github.com/xoofx/zio/pull/17]

	Add IFileSystem.CanWatch. Via (PR #18) [https://github.com/xoofx/zio/pull/18]

	Add support for netstandard2.0 to avoid pulling dependencies there. Via (PR #21) [https://github.com/xoofx/zio/pull/21]

0.6.0 (23 Dec 2017)

	Add support for mount points at any path for MountFileSystem. Courtesy of Rohan Singh [https://github.com/Rohansi] via PR #11 [https://github.com/xoofx/zio/pull/11]

0.5.0 (10 Dec 2017)

	Propagate the originating IFileSystem to the IFileSystemWatcher events

0.4.0 (9 Dec 2017)

	Add support for IFileSystemWatcher, courtesy of Rohan Singh [https://github.com/Rohansi] via PR #9 [https://github.com/xoofx/zio/pull/9]

0.3.6 (19 Nov 2017)

	Try to fix a sporadic Unauthorized access when using CopyFileCross with a PhysicalFileSystem as a destination

0.3.5 (19 Nov 2017)

	Add FileEntry.CopyTo across filesystems

0.3.4 (19 Nov 2017)

	Fix FileSystemEntry.Parent (FileEntry.Directory). Should return a DirectoryEntry even if it does not exist instead of throwing an exception

0.3.3 (19 Nov 2017)

	Add extension method IFileSystem.GetOrCreateSubFileSystem

0.3.2 (14 Nov 2017)

	Fix issue when combining a root path / with an empty path (#7)

	Add == operator to FileSystemEntrty

0.3.1 (15 May 2017)

	Add IEquatable<FileSystemEntry> to FileSystemEntry

0.3.0 (14 May 2017)

	Add AggregateFileSystem.ClearFileSystems and AggregateFileSystem.FindFileSystemEntries

	Add FileEntry.ReadAllText/WriteAllText/AppendAllText/ReadAllBytes/WriteAllBytes

0.2.0 (5 May 2017)

	Fix directory/file locking issue in MemoryFileSystem

0.1.0 (2 May 2017)

	Initial version

 Zio

Zio [image: https://github.com/xoofx/zio/workflows/ci/badge.svg?branch=main]Build Status [https://github.com/xoofx/zio/actions] [image: https://coveralls.io/repos/github/xoofx/zio/badge.svg?branch=main]Coverage Status [https://coveralls.io/github/xoofx/zio?branch=main] [image: https://img.shields.io/nuget/v/Zio.svg]NuGet [https://www.nuget.org/packages/Zio/]

Zio provides a simple, powerful, cross-platform filesystem abstraction for .NET with many built-ins filesystems.

Features

	Compatible with .NET 4.0, 4.5+, netstandard2.0, netstandard2.1 and net6.0

	API providing all operations provided by the regular System.IO API (e.g File.Move, Directory.Delete… etc.)

	Allowing atomic filesystem operations (e.g File.Replace…)

	A simple interface abstraction IFileSystem [https://github.com/xoofx/zio/blob/main/src/Zio/IFileSystem.cs]

	Supports for filesystem watcher through the IFileSystem.Watch method and the IFileSystemWatcher [https://github.com/xoofx/zio/blob/main/src/Zio/IFileSystemWatcher.cs] interface

	For all builtin filesystems (aggregates, memory…etc.)

	All paths are normalized through a lightweight uniform path struct UPath [https://github.com/xoofx/zio/blob/main/src/Zio/UPath.cs]

	Multiple built-ins filesystems:

	PhysicalFileSystem to access the physical disks, directories and folders.

	With uniform paths, this filesystem on Windows is working like on a Windows Subsystem Linux (WSL), by remapping drives to mount directory (e.g path /mnt/c/Windows equivalent to C:\Windows)

	MemoryFileSystem to access a filesystem in memory:

	Trying to be 100% compatible with a true PhysicalFileSystem (including exceptions)

	Efficient concurrency with a per node (file or directory) locking mechanism

	A safe hierarchical locking strategy (following Unix kernel recommendations for directory locking [https://www.kernel.org/doc/Documentation/filesystems/directory-locking])

	Support for FileShare.Read, FileShare.Write and FileShare.ReadWrite

	Internally support for filesystem atomic operations (File.Replace)

	ZipArchiveFileSystem to access zip archives:

	This filesystem is a wrapper around the ZipArchive [https://docs.microsoft.com/en-us/dotnet/api/system.io.compression.ziparchive?view=netcore-3.1] class

	It can work in case sensitive and case insensitive mode

	Support for FileShare.Read with ZipArchiveMode.Read

	On top of these final filesystem, you can compose more complex filesystems:

	AggregateFileSystem providing a read-only filesystem aggregating multiple filesystem that offers a merged view

	MountFileSystem to mount different filesystems at a specific mount point name

	SubFileSystem to view a sub-folder of another filesystem as if it was a root / directory

	ReadOnlyFileSystem to interact safely with another filesystem in read-only mode

	Higher level API similar to FileSystemEntry, FileEntry and DirectoryEntry offering a similar API to their respective FileSystemInfo, FileInfo, DirectoryInfo

Usage

Accessing a physical filesystem:

var fs = new PhysicalFileSystem();
foreach(var dir in fs.EnumerateDirectories("/mnt/c"))
{
 // ...
}

Using an in-memory filesystem:

var fs = new MemoryFileSystem();
fs.WriteAllText("/temp.txt", "This is a content");
if (fs.FileExists("/temp.txt"))
{
 Console.WriteLine("The content of the file:" + fs.ReadAllText("/temp.txt"))
}

The following documentation provides more information about the API and how to use it.

Documentation

The documentation [https://github.com/xoofx/zio/tree/main/doc] is directly available as part of this repository in the /doc folder.

Download

Zio is available as a NuGet package: [image: https://img.shields.io/nuget/v/Zio.svg]NuGet [https://www.nuget.org/packages/Zio/]

Build

In order to build Zio, you need to install Visual Studio 2022 with latest .NET 6.0 [https://dotnet.microsoft.com/en-us/download/dotnet/6.0]

License

This software is released under the BSD-Clause 2 license [https://github.com/xoofx/zio/blob/main/license.txt].

Credits

The logo is File by jeff [https://thenounproject.com/jeff955/] from the Noun Project

Author

Alexandre MUTEL aka xoofx [https://xoofx.com]

 The Zio FileSystem User Manual

The Zio FileSystem User Manual

Overview

Zio is structured around the following concepts:

	The core interface is Zio.IFileSystem

	A lightweight uniform path as a struct UPath used by all IFileSystem methods

	Many built-ins filesystems available from the namespace Zio.FileSystems

	Simple “higher” level API through FileSystemEntry, FileEntry and DirectoryEntry (similar to FileSystemInfo, FileInfo and DirectoryInfo from System.IO)

Normalized paths with UPath

All paths in Zio are using a structure UPath that represents a uniform path information (either a file or a directory)

Why this is needed? By normalizing the path used through the API, we can more efficiently verify malformed paths, allow to cache them without asking if it is of the same form. Typically, with System.IO.Path when you perform a Path.Combine with C:\This\Path and ../Test, you will get C:\This\Path\../Test, but if you try to use this as a key, it will not match the real final directory C:\This\Path\Test.

UPath tries to address this problem with the following core concepts:

	A UPath can be absolute (starting by a leading /) or relative (e.g name/path or ../../path)

	A UPath is normalized like a Unix file or directory path:

	The character / is used to separate directories

	The character \ is replaced by /

	The parent directory .. or current directory . in an absolute path are squashed and remove

	Any consecutive / are squashed

	Any trailing / are removed

	A UPath can be safely used in as a key of a IDictionary<TKey,TValue>

	A UPath is memory efficient (contains a single string of the normalized path)

	Creating a path that is already UPath normalized doesn’t create a new allocation

var path = (UPath)"/this/is/a/path/to/a/directory"

The UPath allows to combine path either by using UPath.Combine or the / operator:

// Equivalent to UPath.Combine(path, "myfile.txt")
var filePath = path / "myfile.txt";

If a path is absolute, and contains unnecessary .. or ., they will be squashed and removed:

var path = (UPath)@"/this\is/wow/../an/absolute/./path/"

// Prints /this/is/an/absolute/path
Console.WriteLine(path);

The interface IFileSystem

The IFileSystem interface [https://github.com/xoofx/zio/blob/master/src/Zio/IFileSystem.cs] is the central interface that makes Zio filesystem abstraction powerful. It is in fact partly inspired on how the internals of CoreCLR is developed around an abstract class called FileSystem [https://github.com/dotnet/corefx/blob/19edd49851626fd32433688078ebbf8ad8368de3/src/System.IO.FileSystem/src/System/IO/FileSystem.cs].

All methods are simply exposed through a single interface. These methods provide the same level of features that are exposed through different classes in System.IO, including the expected exceptions returned by these methods.

This is a key concept of Zio: While the IFileSystem abstract the filesystem, it should provide all the features of the existing System.IO APIs that are currently exposed in .NET, without removing optimized scenarios (e.g if File.Move exists, while we could provide only a Delete+Copy, it is because the OS itself can provide such optimized method - which is usually atomic, so it is important to keep this level of features)

The IFileSystem API is mainly divided into 4 groups:

	Directory API

	System.IO API
	Zio.IFileSystem API

	Directory.Create
	IFileSystem.CreateDirectory

	Directory.Delete
	IFileSystem.DeleteDirectory

	Directory.Exists
	IFileSystem.DirectoryExists

	Directory.Move
	IFileSystem.MoveDirectory

	File API

	System.IO API
	Zio.IFileSystem API

	File.Copy
	IFileSystem.CopyFile

	File.Replace
	IFileSystem.ReplaceFile

	FileInfo.Length
	IFileSystem.GetFileLength

	File.Exists
	IFileSystem.FileExists

	File.Move
	IFileSystem.FileMove

	File.Delete
	IFileSystem.FileDelete

	File.Open or FileStream
	IFileSystem.OpenFile

	Metadata API that can apply for both File and Directory

	System.IO API
	Zio.IFileSystem API

	File.GetAttributes
	IFileSystem.GetAttributes

	File.SetAttributes
	IFileSystem.SetAttributes

	File.GetCreationTime
	IFileSystem.GetCreationTime

	File.SetCreationTime
	IFileSystem.SetCreationTime

	File.GetLastAccessTime
	IFileSystem.GetLastAccessTime

	File.SetLastAccessTime
	IFileSystem.SetLastAccessTime

	File.GetLastWriteTime
	IFileSystem.GetLastWriteTime

	File.SetLastWriteTime
	IFileSystem.SetLastWriteTime

	Search API

	System.IO API
	Zio.IFileSystem API

	Directory.EnumerateFiles
Directory.EnumerateDirectories
Directory.EnumerateFileSystemEntries

 <no title>

 This folder contains demo scenes that can be build as test applications.

Visit https://github.com/cs-util-com/cscore for more details

 <no title>

 https://fonts.google.com/noto/specimen/Noto+Emoji
(Currently problematic to view the font icons, best online page for copy paste into Unity text I found was https://photopea.github.io/Typr.js/ so far

 <no title>

 This folder contains the cscore code that provides the Unity specific unit tests of cscore

Visit https://github.com/cs-util-com/cscore for more details

 C Sharp Access Modifiers Overview

C Sharp Access Modifiers Overview

[image: C Sharp Access Modifiers Overview 1]abc123

(From https://stackoverflow.com/a/51241984/165106)

[image: C Sharp Access Modifiers Overview 2]abc123

(From https://stackoverflow.com/a/54803483/165106)

From docs.microsoft.com [https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/access-modifiers]:

public

The type or member can be accessed by any other code in the same assembly or another assembly that references it.

private

The type or member can only be accessed by code in the same class or struct.

protected

The type or member can only be accessed by code in the same class or struct, or in a derived class.

private protected (added in C# 7.2)

The type or member can only be accessed by code in the same class or struct, or in a derived class from the same assembly, but not from another assembly.

internal

The type or member can be accessed by any code in the same assembly, but not from another assembly.

protected internal

The type or member can be accessed by any code in the same assembly, or by any derived class in another assembly.

When no access modifier is set, a default access modifier is used. So there is always some form of access modifier even if it’s not set.

 Steps to follow

Steps to follow

	Open PlainNetClassLib.csproj and set the new version number, compare with https://www.nuget.org/packages/com.csutil.cscore

	Build the PlainNetClassLib which will also produce the new .nupkg file

	Upload the new package file at https://www.nuget.org/packages/manage/upload

	Use Unity to generate a new package version

	Upload the new package to https://publisher.assetstore.unity3d.com/package.html?id=417525

 <no title>

 Regex to cleanup all lines of successfully killed mutants for the console report:

\[Killed\]([^\n])+\n

Run stryker from the XUnit test folder:

dotnet stryker --solution-path "..\CsCore.sln" -ca perTest

For the ca parameter see https://github.com/stryker-mutator/stryker-net/blob/master/docs/Configuration.md#coverage-analysis

 <no title>

 This folder contains the pure C# xunit tests plus a XUnitRunner system that allows to execute these Unit tests during runtime in an actual built.

